Add FLAX code example
Browse files
README.md
CHANGED
|
@@ -28,22 +28,41 @@ fine-tuned versions on a task that interests you.
|
|
| 28 |
|
| 29 |
### How to use
|
| 30 |
|
| 31 |
-
Here is how to use this model:
|
| 32 |
|
| 33 |
```python
|
| 34 |
from transformers import ViTFeatureExtractor, ViTModel
|
| 35 |
from PIL import Image
|
| 36 |
import requests
|
|
|
|
| 37 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
| 38 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
| 39 |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 40 |
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 41 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
|
|
|
| 42 |
outputs = model(**inputs)
|
| 43 |
last_hidden_states = outputs.last_hidden_state
|
| 44 |
```
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
## Training data
|
| 49 |
|
|
|
|
| 28 |
|
| 29 |
### How to use
|
| 30 |
|
| 31 |
+
Here is how to use this model in PyTorch:
|
| 32 |
|
| 33 |
```python
|
| 34 |
from transformers import ViTFeatureExtractor, ViTModel
|
| 35 |
from PIL import Image
|
| 36 |
import requests
|
| 37 |
+
|
| 38 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
| 39 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 40 |
+
|
| 41 |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 42 |
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 43 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 44 |
+
|
| 45 |
outputs = model(**inputs)
|
| 46 |
last_hidden_states = outputs.last_hidden_state
|
| 47 |
```
|
| 48 |
|
| 49 |
+
Here is how to use this model in JAX/Flax:
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from transformers import ViTFeatureExtractor, FlaxViTModel
|
| 53 |
+
from PIL import Image
|
| 54 |
+
import requests
|
| 55 |
+
|
| 56 |
+
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
| 57 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 58 |
+
|
| 59 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 60 |
+
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 61 |
+
|
| 62 |
+
inputs = feature_extractor(images=image, return_tensors="np")
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
last_hidden_states = outputs.last_hidden_state
|
| 65 |
+
```
|
| 66 |
|
| 67 |
## Training data
|
| 68 |
|