Upload README.md with huggingface_hub (#1)
Browse files- Upload README.md with huggingface_hub (34bdac24038c6eb7a9df084b1ecc190d81bc0aa1)
README.md
CHANGED
@@ -1,199 +1,89 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
##
|
59 |
|
60 |
-
|
61 |
|
62 |
-
[
|
63 |
|
64 |
-
###
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
---
|
6 |
|
7 |
+
# SigLIP 2 Base
|
8 |
|
9 |
+
[SigLIP 2](https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107)
|
10 |
+
extends the pretraining objective of
|
11 |
+
[SigLIP](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba)
|
12 |
+
with prior, independently developed techniques into a unified recipe, for improved semantic
|
13 |
+
understanding, localization, and dense features.
|
14 |
|
15 |
+
## Intended uses
|
16 |
|
17 |
+
You can use the raw model for tasks like zero-shot image classification and
|
18 |
+
image-text retrieval, or as a vision encoder for VLMs (and other vision tasks).
|
19 |
|
20 |
+
Here is how to use this model to perform zero-shot image classification:
|
21 |
|
22 |
+
```python
|
23 |
+
from transformers import pipeline
|
24 |
|
25 |
+
# load pipeline
|
26 |
+
ckpt = "google/siglip2-base-patch16-naflex"
|
27 |
+
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")
|
28 |
|
29 |
+
# load image and candidate labels
|
30 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
31 |
+
candidate_labels = ["2 cats", "a plane", "a remote"]
|
32 |
|
33 |
+
# run inference
|
34 |
+
outputs = image_classifier(image, candidate_labels)
|
35 |
+
print(outputs)
|
36 |
+
```
|
|
|
|
|
|
|
37 |
|
38 |
+
You can encode an image using the Vision Tower like so:
|
39 |
|
40 |
+
```python
|
41 |
+
import torch
|
42 |
+
from transformers import AutoModel, AutoProcessor
|
43 |
+
from transformers.image_utils import load_image
|
44 |
|
45 |
+
# load the model and processor
|
46 |
+
ckpt = "google/siglip2-base-patch16-naflex"
|
47 |
+
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
|
48 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
49 |
|
50 |
+
# load the image
|
51 |
+
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
|
52 |
+
inputs = processor(images=[image], return_tensors="pt").to(model.device)
|
53 |
|
54 |
+
# run infernece
|
55 |
+
with torch.no_grad():
|
56 |
+
image_embeddings = model.get_image_features(**inputs)
|
57 |
|
58 |
+
print(image_embeddings.shape)
|
59 |
+
```
|
60 |
|
61 |
+
For more code examples, we refer to the [siglip2 documentation](https://huggingface.co/transformers/main/model_doc/siglip2.html#).
|
62 |
|
63 |
+
## Training procedure
|
64 |
|
65 |
+
SigLIP 2 adds some clever training objectives on top of SigLIP:
|
66 |
|
67 |
+
1. Decoder loss
|
68 |
+
2. Global-local and masked prediction loss
|
69 |
+
3. Aspect ratio and resolution adaptibility
|
70 |
|
71 |
+
### Training data
|
72 |
|
73 |
+
SigLIP 2 is pre-trained on the WebLI dataset [(Chen et al., 2023)](https://arxiv.org/abs/2209.06794).
|
74 |
|
75 |
+
### Compute
|
76 |
|
77 |
+
The model was trained on up to 2048 TPU-v5e chips.
|
78 |
|
79 |
+
## Evaluation results
|
80 |
|
81 |
+
Evaluation of SigLIP 2 is shown below (taken from the paper).
|
82 |
|
83 |
+
[Evaluation Table](TODO)
|
84 |
|
85 |
+
### BibTeX entry and citation info
|
86 |
|
87 |
+
```bibtex
|
88 |
+
TODO
|
89 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|