Zero-Shot Image Classification
Transformers
Safetensors
siglip2
vision
Inference Endpoints
ariG23498 HF staff commited on
Commit
860e819
·
verified ·
1 Parent(s): c7a07b6

Upload README.md with huggingface_hub (#1)

Browse files

- Upload README.md with huggingface_hub (34bdac24038c6eb7a9df084b1ecc190d81bc0aa1)

Files changed (1) hide show
  1. README.md +59 -169
README.md CHANGED
@@ -1,199 +1,89 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
  ---
6
 
7
+ # SigLIP 2 Base
8
 
9
+ [SigLIP 2](https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107)
10
+ extends the pretraining objective of
11
+ [SigLIP](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba)
12
+ with prior, independently developed techniques into a unified recipe, for improved semantic
13
+ understanding, localization, and dense features.
14
 
15
+ ## Intended uses
16
 
17
+ You can use the raw model for tasks like zero-shot image classification and
18
+ image-text retrieval, or as a vision encoder for VLMs (and other vision tasks).
19
 
20
+ Here is how to use this model to perform zero-shot image classification:
21
 
22
+ ```python
23
+ from transformers import pipeline
24
 
25
+ # load pipeline
26
+ ckpt = "google/siglip2-base-patch16-naflex"
27
+ image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")
28
 
29
+ # load image and candidate labels
30
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
31
+ candidate_labels = ["2 cats", "a plane", "a remote"]
32
 
33
+ # run inference
34
+ outputs = image_classifier(image, candidate_labels)
35
+ print(outputs)
36
+ ```
 
 
 
37
 
38
+ You can encode an image using the Vision Tower like so:
39
 
40
+ ```python
41
+ import torch
42
+ from transformers import AutoModel, AutoProcessor
43
+ from transformers.image_utils import load_image
44
 
45
+ # load the model and processor
46
+ ckpt = "google/siglip2-base-patch16-naflex"
47
+ model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
48
+ processor = AutoProcessor.from_pretrained(ckpt)
49
 
50
+ # load the image
51
+ image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
52
+ inputs = processor(images=[image], return_tensors="pt").to(model.device)
53
 
54
+ # run infernece
55
+ with torch.no_grad():
56
+ image_embeddings = model.get_image_features(**inputs)
57
 
58
+ print(image_embeddings.shape)
59
+ ```
60
 
61
+ For more code examples, we refer to the [siglip2 documentation](https://huggingface.co/transformers/main/model_doc/siglip2.html#).
62
 
63
+ ## Training procedure
64
 
65
+ SigLIP 2 adds some clever training objectives on top of SigLIP:
66
 
67
+ 1. Decoder loss
68
+ 2. Global-local and masked prediction loss
69
+ 3. Aspect ratio and resolution adaptibility
70
 
71
+ ### Training data
72
 
73
+ SigLIP 2 is pre-trained on the WebLI dataset [(Chen et al., 2023)](https://arxiv.org/abs/2209.06794).
74
 
75
+ ### Compute
76
 
77
+ The model was trained on up to 2048 TPU-v5e chips.
78
 
79
+ ## Evaluation results
80
 
81
+ Evaluation of SigLIP 2 is shown below (taken from the paper).
82
 
83
+ [Evaluation Table](TODO)
84
 
85
+ ### BibTeX entry and citation info
86
 
87
+ ```bibtex
88
+ TODO
89
+ ```