--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-2_H-256_A-4_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5211267605633803 --- # bert_uncased_L-2_H-256_A-4_wnli This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6966 - Accuracy: 0.5211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7188 | 1.0 | 3 | 0.7157 | 0.4085 | | 0.6947 | 2.0 | 6 | 0.6966 | 0.5211 | | 0.693 | 3.0 | 9 | 0.6977 | 0.5352 | | 0.699 | 4.0 | 12 | 0.7026 | 0.5493 | | 0.6941 | 5.0 | 15 | 0.7084 | 0.3944 | | 0.6908 | 6.0 | 18 | 0.7167 | 0.3380 | | 0.6915 | 7.0 | 21 | 0.7230 | 0.3239 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3