--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_mrpc_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- # mobilebert_add_GLUE_Experiment_logit_kd_mrpc_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5534 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6399 | 1.0 | 29 | 0.5562 | 0.6838 | 0.8122 | 0.7480 | | 0.6101 | 2.0 | 58 | 0.5559 | 0.6838 | 0.8122 | 0.7480 | | 0.6111 | 3.0 | 87 | 0.5557 | 0.6838 | 0.8122 | 0.7480 | | 0.6104 | 4.0 | 116 | 0.5572 | 0.6838 | 0.8122 | 0.7480 | | 0.6086 | 5.0 | 145 | 0.5550 | 0.6838 | 0.8122 | 0.7480 | | 0.6058 | 6.0 | 174 | 0.5534 | 0.6838 | 0.8122 | 0.7480 | | 0.6036 | 7.0 | 203 | 0.5745 | 0.6838 | 0.8122 | 0.7480 | | 0.5969 | 8.0 | 232 | 0.5595 | 0.6838 | 0.8122 | 0.7480 | | 0.5735 | 9.0 | 261 | 0.5699 | 0.6838 | 0.8122 | 0.7480 | | 0.5597 | 10.0 | 290 | 0.5608 | 0.6838 | 0.8122 | 0.7480 | | 0.5456 | 11.0 | 319 | 0.5714 | 0.6838 | 0.8122 | 0.7480 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2