--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert_uncased_L-2_H-256_A-4_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9205 --- # bert_uncased_L-2_H-256_A-4_emotion This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2109 - Accuracy: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3021 | 1.0 | 250 | 0.8220 | 0.7345 | | 0.6139 | 2.0 | 500 | 0.3995 | 0.885 | | 0.3573 | 3.0 | 750 | 0.2846 | 0.902 | | 0.261 | 4.0 | 1000 | 0.2471 | 0.9085 | | 0.2206 | 5.0 | 1250 | 0.2270 | 0.914 | | 0.1952 | 6.0 | 1500 | 0.2247 | 0.9125 | | 0.1757 | 7.0 | 1750 | 0.2127 | 0.918 | | 0.1679 | 8.0 | 2000 | 0.2131 | 0.9145 | | 0.1507 | 9.0 | 2250 | 0.2109 | 0.9205 | | 0.1514 | 10.0 | 2500 | 0.2111 | 0.92 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.1