File size: 1,543 Bytes
ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 ffbad14 356df87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- ko
license: apache-2.0
base_model: openai/whisper-base
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- gingercake01/stt0409
model-index:
- name: baseWhisper
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# baseWhisper
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the stt0409 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Cer: 1255.9727
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 0.0 | 6.8 | 1000 | 0.0000 | 658.3618 |
| 0.0 | 13.61 | 2000 | 0.0000 | 1255.9727 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|