Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
์ฌ์ฉ์์
|
6 |
+
|
7 |
+
```python
|
8 |
+
import onnxruntime as ort
|
9 |
+
import numpy as np
|
10 |
+
from transformers import MobileBertTokenizer
|
11 |
+
|
12 |
+
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๊ฒฝ๋ก ์ค์
|
13 |
+
model_path = r'C:\NEW_tinybert\AI\tinybert_model.onnx' # ONNX ๋ชจ๋ธ ๊ฒฝ๋ก
|
14 |
+
tokenizer_path = r'C:\NEW_distilbert\AI' # ๋ก์ปฌ ํ ํฌ๋์ด์ ๊ฒฝ๋ก
|
15 |
+
|
16 |
+
# ONNX ๋ชจ๋ธ ์ธ์
์ด๊ธฐํ
|
17 |
+
ort_session = ort.InferenceSession(model_path)
|
18 |
+
|
19 |
+
# MobileBERT ํ ํฌ๋์ด์ ๋ก๋
|
20 |
+
tokenizer = MobileBertTokenizer.from_pretrained(tokenizer_path)
|
21 |
+
|
22 |
+
# ํ
์คํธ ๋ถ๋ฅ ํจ์
|
23 |
+
def test_model(text):
|
24 |
+
"""
|
25 |
+
์
๋ ฅ๋ ํ
์คํธ๋ฅผ ONNX ๋ชจ๋ธ์ ์ฌ์ฉํด ๋ถ๋ฅํ๋ ํจ์
|
26 |
+
Args:
|
27 |
+
text (str): ๋ถ์ํ ํ
์คํธ
|
28 |
+
Returns:
|
29 |
+
str: ์์ธก ๊ฒฐ๊ณผ ๋ฉ์์ง
|
30 |
+
"""
|
31 |
+
# ์
๋ ฅ ํ
์คํธ๋ฅผ ํ ํฐํ ๋ฐ ONNX ๋ชจ๋ธ ์
๋ ฅ ํ์์ผ๋ก ๋ณํ
|
32 |
+
inputs = tokenizer(
|
33 |
+
text,
|
34 |
+
padding="max_length", # ์
๋ ฅ ๊ธธ์ด๋ฅผ 128๋ก ๊ณ ์
|
35 |
+
truncation=True, # ๊ธด ํ
์คํธ๋ ์๋ผ๋
|
36 |
+
max_length=128, # ์ต๋ ํ ํฐ ๊ธธ์ด
|
37 |
+
return_tensors="np" # NumPy ๋ฐฐ์ด ํ์์ผ๋ก ๋ฐํ
|
38 |
+
)
|
39 |
+
|
40 |
+
# NumPy ๋ฐฐ์ด์ int64๋ก ๋ณํ
|
41 |
+
input_ids = inputs["input_ids"].astype(np.int64)
|
42 |
+
attention_mask = inputs["attention_mask"].astype(np.int64)
|
43 |
+
|
44 |
+
# ONNX ๋ชจ๋ธ ์
๋ ฅ ์ค๋น
|
45 |
+
ort_inputs = {
|
46 |
+
"input_ids": input_ids,
|
47 |
+
"attention_mask": attention_mask
|
48 |
+
}
|
49 |
+
|
50 |
+
# ONNX ๋ชจ๋ธ ์ถ๋ก ์คํ
|
51 |
+
outputs = ort_session.run(None, ort_inputs)
|
52 |
+
logits = outputs[0] # ๋ชจ๋ธ ์ถ๋ ฅ (๋ก์ง ๊ฐ)
|
53 |
+
|
54 |
+
# ๋ก์ง ๊ฐ์ ํ๋ฅ ๋ก ๋ณํ ๋ฐ ํด๋์ค ์์ธก
|
55 |
+
predicted_class = np.argmax(logits, axis=1).item()
|
56 |
+
|
57 |
+
# ๊ฒฐ๊ณผ ๋ฐํ
|
58 |
+
return "๋ก๋งจ์ค ์ค์บ ์ผ ๊ฐ๋ฅ์ฑ ์์" if predicted_class == 1 else "๋ก๋งจ์ค ์ค์บ ์ด ์๋"
|
59 |
+
|
60 |
+
# ํ
์คํธํ ๋ํ ๋ด์ฉ
|
61 |
+
test_texts = [
|
62 |
+
"๋ ์๋ง ์๋?",
|
63 |
+
"์ ๋ ๊ธ์ต ์ํ์ ์๊ฐํ๋ ์ฌ๋์
๋๋ค. ํฌ์ํ๋ฉด ์ด์ต์ด ํฝ๋๋ค.",
|
64 |
+
"๋ด ๋ณด์ง๊ฐ ๋ฌ์์ฌ๋์ด",
|
65 |
+
"๋ด ๊ฐ์ด ๋ง์ง๋??"
|
66 |
+
]
|
67 |
+
|
68 |
+
# ๊ฐ ํ
์คํธ ํ
์คํธ์ ๋ํด ๊ฒฐ๊ณผ ์ถ๋ ฅ
|
69 |
+
for text in test_texts:
|
70 |
+
result = test_model(text)
|
71 |
+
print(f"์
๋ ฅ: {text} => ๊ฒฐ๊ณผ: {result}")
|
72 |
+
|
73 |
+
```
|