--- library_name: transformers base_model: nreimers/BERT-Tiny_L-2_H-128_A-2 tags: - generated_from_trainer model-index: - name: bert_tiny_trained results: [] --- # bert_tiny_trained This model is a fine-tuned version of [nreimers/BERT-Tiny_L-2_H-128_A-2](https://huggingface.co/nreimers/BERT-Tiny_L-2_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 11 | 1.3285 | | No log | 2.0 | 22 | 1.3144 | | No log | 3.0 | 33 | 1.2977 | | No log | 4.0 | 44 | 1.2683 | | No log | 5.0 | 55 | 1.2476 | | No log | 6.0 | 66 | 1.2256 | | No log | 7.0 | 77 | 1.1961 | | No log | 8.0 | 88 | 1.1853 | | No log | 9.0 | 99 | 1.1625 | | No log | 10.0 | 110 | 1.1284 | | No log | 11.0 | 121 | 1.1036 | | No log | 12.0 | 132 | 1.0812 | | No log | 13.0 | 143 | 1.0573 | | No log | 14.0 | 154 | 1.0323 | | No log | 15.0 | 165 | 1.0092 | | No log | 16.0 | 176 | 0.9913 | | No log | 17.0 | 187 | 0.9725 | | No log | 18.0 | 198 | 0.9492 | | No log | 19.0 | 209 | 0.9269 | | No log | 20.0 | 220 | 0.9061 | | No log | 21.0 | 231 | 0.8869 | | No log | 22.0 | 242 | 0.8719 | | No log | 23.0 | 253 | 0.8521 | | No log | 24.0 | 264 | 0.8357 | | No log | 25.0 | 275 | 0.8169 | | No log | 26.0 | 286 | 0.8026 | | No log | 27.0 | 297 | 0.7936 | | No log | 28.0 | 308 | 0.7783 | | No log | 29.0 | 319 | 0.7677 | | No log | 30.0 | 330 | 0.7577 | | No log | 31.0 | 341 | 0.7516 | | No log | 32.0 | 352 | 0.7431 | | No log | 33.0 | 363 | 0.7355 | | No log | 34.0 | 374 | 0.7287 | | No log | 35.0 | 385 | 0.7220 | | No log | 36.0 | 396 | 0.7154 | | No log | 37.0 | 407 | 0.7119 | | No log | 38.0 | 418 | 0.7073 | | No log | 39.0 | 429 | 0.7025 | | No log | 40.0 | 440 | 0.6976 | | No log | 41.0 | 451 | 0.6931 | | No log | 42.0 | 462 | 0.6890 | | No log | 43.0 | 473 | 0.6859 | | No log | 44.0 | 484 | 0.6830 | | No log | 45.0 | 495 | 0.6807 | | 0.7544 | 46.0 | 506 | 0.6785 | | 0.7544 | 47.0 | 517 | 0.6774 | | 0.7544 | 48.0 | 528 | 0.6769 | | 0.7544 | 49.0 | 539 | 0.6768 | | 0.7544 | 50.0 | 550 | 0.6767 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0