File size: 2,488 Bytes
64bb917 c6fc380 6999c15 1252742 c6fc380 1252742 c6fc380 471d4fa 1252742 c6fc380 1252742 c6fc380 471d4fa 1252742 c6fc380 1252742 c6fc380 471d4fa 1252742 c6fc380 1252742 c6fc380 471d4fa 1252742 c6fc380 471d4fa c6fc380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: other
---
# AIDO.RNA-1M-MARS
AIDO.RNA-1M-MARS is a 1 million parameter RNA foundation model pre-trained on 886 million RNA sequences from the MARS database.
For a more detailed description, refer to the SOTA model in this collection https://huggingface.co/genbio-ai/AIDO.RNA-1.6B
## How to Use
### Build any downstream models from this backbone with ModelGenerator
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
```bash
mgen fit --model SequenceClassification --model.backbone aido_rna_1m_mars --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
mgen test --model SequenceClassification --model.backbone aido_rna_1m_mars --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
```
### Or use directly in Python
#### Embedding
```python
from modelgenerator.tasks import Embed
model = Embed.from_config({"model.backbone": "aido_rna_1m_mars"}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
embedding = model(transformed_batch)
print(embedding.shape)
print(embedding)
```
#### Sequence-level Classification
```python
import torch
from modelgenerator.tasks import SequenceClassification
model = SequenceClassification.from_config({"model.backbone": "aido_rna_1m_mars", "model.n_classes": 2}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(transformed_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Token-level Classification
```python
import torch
from modelgenerator.tasks import TokenClassification
model = TokenClassification.from_config({"model.backbone": "aido_rna_1m_mars", "model.n_classes": 3}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(transformed_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Sequence-level Regression
```python
from modelgenerator.tasks import SequenceRegression
model = SequenceRegression.from_config({"model.backbone": "aido_rna_1m_mars"}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "AGCT"]})
logits = model(transformed_batch)
print(logits)
```
### Get RNA sequence embedding
```python
from genbio_finetune.tasks import Embed
model = Embed.from_config({"model.backbone": "aido_rna_1m_mars"}).eval()
transformed_batch = model.transform({"sequences": ["ACGT", "ACGT"]})
embedding = model(transformed_batch)
print(embedding.shape)
print(embedding)
``` |