import argparse from model_utils import get_opt, opt_sparsellm, opt_eval from datautils import get_loaders import torch def main(): parser = argparse.ArgumentParser() # Arguments parsing parser.add_argument('--model', type=str, default='facebook/opt-125m', help='OPT model to load; pass `facebook/opt-X`.') parser.add_argument('--dataset', type=str, choices=['wikitext2', 'ptb', 'c4'], default='c4', help='Where to extract calibration data from.') parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.') parser.add_argument('--nsamples', type=int, default=64, help='Number of calibration data samples.') parser.add_argument('--percdamp', type=float, default=.01, help='Percent of the average Hessian diagonal to use for dampening.') parser.add_argument('--sparsity', type=float, default=0.7, help='Target sparsity') parser.add_argument('--prunen', type=int, default=0, help='N for N:M pruning.') parser.add_argument('--prunem', type=int, default=0, help='M for N:M pruning.') parser.add_argument('--blocksize', type=int, default=128, help='Blocksize to use for adaptive mask selection.') parser.add_argument('--gmp', action='store_true', help='Whether to run the GMP baseline.') parser.add_argument('--wbits', type=int, default=16, help='Whether to quantize as well.') parser.add_argument('--minlayer', type=int, default=-1, help='Prune all layers with id >= this.') parser.add_argument('--maxlayer', type=int, default=1000, help='Prune all layers with id < this.') parser.add_argument('--prune_only', type=str, default='', help='Prune only layers that contain this text.') parser.add_argument('--invert', action='store_true', help='Invert subset.') parser.add_argument('--save', type=str, default='', help='Path to saved model.') parser.add_argument('--log_wandb', action='store_true', help='Whether to log to wandb.') args = parser.parse_args() model = get_opt(args) model.eval() dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen) if (args.sparsity or args.prunen) and not args.gmp: opt_sparsellm(model, dataloader, torch.device('cuda'), args) for dataset in ['wikitext2', 'ptb', 'c4']: dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen) opt_eval(model, testloader, torch.device('cuda'), args, dataset) if args.save: model.save_pretrained(args.save) if __name__ == '__main__': main()