import argparse from model_utils import get_llama, llama_sparsellm, llama_eval from datautils import get_loaders import torch def main(): parser = argparse.ArgumentParser() # Arguments parsing parser.add_argument("--model", type=str, default='meta-llama/Llama-2-7b-hf', help="LLaMA model to load") parser.add_argument("--dataset", type=str, choices=["wikitext2", "ptb", "c4"], default="c4", help="Dataset for calibration.") parser.add_argument("--seed", type=int, default=0, help="Seed for sampling calibration data.") parser.add_argument("--nsamples", type=int, default=32, help="Number of calibration data samples.") parser.add_argument("--percdamp", type=float, default=0.01, help="Percent of Hessian diagonal for dampening.") parser.add_argument("--sparsity", type=float, default=0.5, help="Target sparsity.") parser.add_argument("--prunen", type=int, default=0, help="N for N:M pruning.") parser.add_argument("--prunem", type=int, default=0, help="M for N:M pruning.") parser.add_argument("--blocksize", type=int, default=128, help="Blocksize for adaptive mask selection.") parser.add_argument("--gmp", action="store_true", help="Run GMP baseline.") parser.add_argument("--wbits", type=int, default=16, help="Quantization bits.") parser.add_argument("--minlayer", type=int, default=-1, help="Prune layers with id >= this.") parser.add_argument("--maxlayer", type=int, default=1000, help="Prune layers with id < this.") parser.add_argument("--prune_only", type=str, default="", help="Prune only layers containing this text.") parser.add_argument("--invert", action="store_true", help="Invert subset.") parser.add_argument("--save", type=str, default="", help="Path to save model.") parser.add_argument("--true-sequential", action="store_true", help="Run in true sequential mode.") parser.add_argument("--log_wandb", action="store_true", help="Log to W&B.") args = parser.parse_args() model = get_llama(args) model.eval() dataloader, testloader = get_loaders(args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen) if (args.sparsity or args.prunen) and not args.gmp: llama_sparsellm(model, dataloader, torch.device('cuda'), args) for dataset in ['wikitext2', 'ptb', 'c4']: dataloader, testloader = get_loaders(dataset, seed=args.seed, model=args.model, seqlen=model.seqlen) llama_eval(model, testloader, torch.device('cuda'), args, dataset) if args.save: model.save_pretrained(args.save) if __name__ == '__main__': main()