|
|
|
|
|
|
|
import math |
|
import time |
|
|
|
import torch |
|
import torch.nn as nn |
|
import transformers |
|
|
|
from quant import * |
|
|
|
|
|
DEBUG = True |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
torch.backends.cudnn.allow_tf32 = False |
|
|
|
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''): |
|
if type(module) in layers: |
|
return {name: module} |
|
res = {} |
|
for name1, child in module.named_children(): |
|
res.update(find_layers( |
|
child, layers=layers, name=name + '.' + name1 if name != '' else name1 |
|
)) |
|
return res |
|
|
|
class SparseGPT_OPT: |
|
|
|
def __init__(self, layer): |
|
self.layer = layer |
|
self.dev = self.layer.weight.device |
|
W = layer.weight.data.clone() |
|
if isinstance(self.layer, nn.Conv2d): |
|
W = W.flatten(1) |
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
self.rows = W.shape[0] |
|
self.columns = W.shape[1] |
|
self.H = torch.zeros((self.columns, self.columns), device=self.dev) |
|
self.nsamples = 0 |
|
self.batch_inp = [] |
|
self.batch_out = [] |
|
|
|
def add_batch(self, inp, out, name, blocksize=1024): |
|
if DEBUG: |
|
self.inp1 = inp |
|
self.out1 = out |
|
if len(inp.shape) == 2: |
|
inp = inp.unsqueeze(0) |
|
|
|
if name == 'fc1' or name == 'fc2': |
|
self.batch_inp.append(inp[0].clone().detach()) |
|
if len(out.shape) == 3: |
|
out = out.squeeze(0) |
|
self.batch_out.append(out.clone().detach()) |
|
|
|
tmp = inp.shape[0] |
|
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D): |
|
if len(inp.shape) == 3: |
|
inp = inp.reshape((-1, inp.shape[-1])) |
|
inp = inp.t() |
|
self.H *= self.nsamples / (self.nsamples + tmp) |
|
self.nsamples += tmp |
|
inp = math.sqrt(2 / self.nsamples) * inp.float() |
|
self.H += inp.matmul(inp.t()) |
|
|
|
def fasterprune( |
|
self, sparsity, prunen=0, prunem=0, blocksize=128, percdamp=.01 |
|
): |
|
W = self.layer.weight.data.clone() |
|
if isinstance(self.layer, nn.Conv2d): |
|
W = W.flatten(1) |
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
W = W.float() |
|
|
|
if hasattr(self, 'quantizer'): |
|
if not self.quantizer.ready(): |
|
self.quantizer.find_params(W, weight=True) |
|
|
|
tick = time.time() |
|
|
|
H = self.H |
|
|
|
dead = torch.diag(H) == 0 |
|
H[dead, dead] = 1 |
|
W[:, dead] = 0 |
|
|
|
Losses = torch.zeros(self.rows, device=self.dev) |
|
|
|
damp = percdamp * torch.mean(torch.diag(H)) |
|
diag = torch.arange(self.columns, device=self.dev) |
|
H[diag, diag] += damp |
|
H = torch.linalg.cholesky(H) |
|
H = torch.cholesky_inverse(H) |
|
H = torch.linalg.cholesky(H, upper=True) |
|
Hinv = H |
|
|
|
mask = None |
|
|
|
for i1 in range(0, self.columns, blocksize): |
|
i2 = min(i1 + blocksize, self.columns) |
|
count = i2 - i1 |
|
|
|
W1 = W[:, i1:i2].clone() |
|
Q1 = torch.zeros_like(W1) |
|
Err1 = torch.zeros_like(W1) |
|
Losses1 = torch.zeros_like(W1) |
|
Hinv1 = Hinv[i1:i2, i1:i2] |
|
|
|
if prunen == 0: |
|
if mask is not None: |
|
mask1 = mask[:, i1:i2] |
|
else: |
|
tmp = W1 ** 2 / (torch.diag(Hinv1).reshape((1, -1))) ** 2 |
|
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)] |
|
mask1 = tmp <= thresh |
|
else: |
|
mask1 = torch.zeros_like(W1) == 1 |
|
|
|
for i in range(count): |
|
w = W1[:, i] |
|
d = Hinv1[i, i] |
|
|
|
if prunen != 0 and i % prunem == 0: |
|
tmp = W1[:, i:(i + prunem)] ** 2 / (torch.diag(Hinv1)[i:(i + prunem)].reshape((1, -1))) ** 2 |
|
mask1.scatter_(1, i + torch.topk(tmp, prunen, dim=1, largest=False)[1], True) |
|
|
|
q = w.clone() |
|
q[mask1[:, i]] = 0 |
|
|
|
if hasattr(self, 'quantizer'): |
|
q = quantize( |
|
q.unsqueeze(1), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq |
|
).flatten() |
|
|
|
Q1[:, i] = q |
|
Losses1[:, i] = (w - q) ** 2 / d ** 2 |
|
|
|
err1 = (w - q) / d |
|
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) |
|
Err1[:, i] = err1 |
|
|
|
W[:, i1:i2] = Q1 |
|
Losses += torch.sum(Losses1, 1) / 2 |
|
|
|
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.synchronize() |
|
print('time %.2f' % (time.time() - tick)) |
|
print('error', torch.sum(Losses).item()) |
|
|
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
self.layer.weight.data = W.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype) |
|
|
|
|
|
|
|
def free(self): |
|
if DEBUG: |
|
self.inp1 = None |
|
self.out1 = None |
|
self.H = None |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
class SparseGPT_LlaMA: |
|
|
|
def __init__(self, layer): |
|
self.layer = layer |
|
self.dev = self.layer.weight.device |
|
W = layer.weight.data.clone() |
|
if isinstance(self.layer, nn.Conv2d): |
|
W = W.flatten(1) |
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
self.rows = W.shape[0] |
|
self.columns = W.shape[1] |
|
self.H = torch.zeros((self.columns, self.columns), device=self.dev) |
|
self.nsamples = 0 |
|
self.batch_inp = [] |
|
self.batch_out = [] |
|
|
|
def add_batch(self, inp, out, name, blocksize=1024): |
|
if DEBUG: |
|
self.inp1 = inp |
|
self.out1 = out |
|
if len(inp.shape) == 2: |
|
inp = inp.unsqueeze(0) |
|
|
|
if name == 'mlp.up_proj' or name == 'mlp.down_proj': |
|
self.batch_inp.append(inp[0].clone().detach()) |
|
if len(out.shape) == 3: |
|
out = out.squeeze(0) |
|
self.batch_out.append(out.clone().detach()) |
|
if name == 'mlp.gate_proj': |
|
if len(out.shape) == 3: |
|
out = out.squeeze(0) |
|
self.batch_out.append(out.clone().detach()) |
|
|
|
tmp = inp.shape[0] |
|
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D): |
|
if len(inp.shape) == 3: |
|
inp = inp.reshape((-1, inp.shape[-1])) |
|
inp = inp.t() |
|
self.H *= self.nsamples / (self.nsamples + tmp) |
|
self.nsamples += tmp |
|
inp = math.sqrt(2 / self.nsamples) * inp.float() |
|
self.H += inp.matmul(inp.t()) |
|
|
|
def fasterprune( |
|
self, sparsity, prunen=0, prunem=0, blocksize=128, percdamp=.01 |
|
): |
|
W = self.layer.weight.data.clone() |
|
if isinstance(self.layer, nn.Conv2d): |
|
W = W.flatten(1) |
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
W = W.float() |
|
|
|
if hasattr(self, 'quantizer'): |
|
if not self.quantizer.ready(): |
|
self.quantizer.find_params(W, weight=True) |
|
|
|
tick = time.time() |
|
|
|
H = self.H |
|
|
|
dead = torch.diag(H) == 0 |
|
H[dead, dead] = 1 |
|
W[:, dead] = 0 |
|
|
|
Losses = torch.zeros(self.rows, device=self.dev) |
|
|
|
damp = percdamp * torch.mean(torch.diag(H)) |
|
diag = torch.arange(self.columns, device=self.dev) |
|
H[diag, diag] += damp |
|
H = torch.linalg.cholesky(H) |
|
H = torch.cholesky_inverse(H) |
|
H = torch.linalg.cholesky(H, upper=True) |
|
Hinv = H |
|
|
|
mask = None |
|
|
|
for i1 in range(0, self.columns, blocksize): |
|
i2 = min(i1 + blocksize, self.columns) |
|
count = i2 - i1 |
|
|
|
W1 = W[:, i1:i2].clone() |
|
Q1 = torch.zeros_like(W1) |
|
Err1 = torch.zeros_like(W1) |
|
Losses1 = torch.zeros_like(W1) |
|
Hinv1 = Hinv[i1:i2, i1:i2] |
|
|
|
if prunen == 0: |
|
if mask is not None: |
|
mask1 = mask[:, i1:i2] |
|
else: |
|
tmp = W1 ** 2 / (torch.diag(Hinv1).reshape((1, -1))) ** 2 |
|
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)] |
|
mask1 = tmp <= thresh |
|
else: |
|
mask1 = torch.zeros_like(W1) == 1 |
|
|
|
for i in range(count): |
|
w = W1[:, i] |
|
d = Hinv1[i, i] |
|
|
|
if prunen != 0 and i % prunem == 0: |
|
tmp = W1[:, i:(i + prunem)] ** 2 / (torch.diag(Hinv1)[i:(i + prunem)].reshape((1, -1))) ** 2 |
|
mask1.scatter_(1, i + torch.topk(tmp, prunen, dim=1, largest=False)[1], True) |
|
|
|
q = w.clone() |
|
q[mask1[:, i]] = 0 |
|
|
|
if hasattr(self, 'quantizer'): |
|
q = quantize( |
|
q.unsqueeze(1), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq |
|
).flatten() |
|
|
|
Q1[:, i] = q |
|
Losses1[:, i] = (w - q) ** 2 / d ** 2 |
|
|
|
err1 = (w - q) / d |
|
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) |
|
Err1[:, i] = err1 |
|
|
|
W[:, i1:i2] = Q1 |
|
Losses += torch.sum(Losses1, 1) / 2 |
|
|
|
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.synchronize() |
|
print('time %.2f' % (time.time() - tick)) |
|
print('error', torch.sum(Losses).item()) |
|
|
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
self.layer.weight.data = W.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype) |
|
|
|
|
|
|
|
def free(self): |
|
if DEBUG: |
|
self.inp1 = None |
|
self.out1 = None |
|
self.H = None |
|
torch.cuda.empty_cache() |