File size: 4,286 Bytes
6815477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import torch
import torch.nn as nn


def quantize(x, scale, zero, maxq):
    q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
    return scale * (q - zero)

class Quantizer(nn.Module):

    def __init__(self, shape=1):
        super(Quantizer, self).__init__()
        self.register_buffer('maxq', torch.tensor(0))
        self.register_buffer('scale', torch.zeros(shape))
        self.register_buffer('zero', torch.zeros(shape))

    def configure(
            self,
            bits, perchannel=False, sym=True, 
            mse=False, norm=2.4, grid=100, maxshrink=.8,
            grouprows=1
        ):
        self.maxq = torch.tensor(2 ** bits - 1)
        self.perchannel = perchannel
        self.sym = sym
        self.mse = mse
        self.norm = norm
        self.grid = grid
        self.maxshrink = maxshrink 
        self.grouprows = grouprows

    def find_params(self, x, weight=False):
        dev = x.device
        self.maxq = self.maxq.to(dev)

        shape = x.shape
        if self.perchannel:
            if weight:
                x = x.flatten(1)
                if self.grouprows > 1: 
                    x = x.reshape((x.shape[0] // self.grouprows, -1))
            else:
                if len(shape) == 4:
                    x = x.permute([1, 0, 2, 3])
                    x = x.flatten(1)
                if len(shape) == 3:
                    x = x.reshape((-1, shape[-1])).t()
                if len(shape) == 2:
                    x = x.t()
        else:
            x = x.flatten().unsqueeze(0)

        tmp = torch.zeros(x.shape[0], device=dev)
        xmin = torch.minimum(x.min(1)[0], tmp)
        xmax = torch.maximum(x.max(1)[0], tmp)

        if self.sym:
            xmax = torch.maximum(torch.abs(xmin), xmax)
            tmp = xmin < 0
            if torch.any(tmp):
                xmin[tmp] = -xmax[tmp]
        tmp = (xmin == 0) & (xmax == 0)
        xmin[tmp] = -1
        xmax[tmp] = +1

        self.scale = (xmax - xmin) / self.maxq
        if self.sym:
            self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
        else:
            self.zero = torch.round(-xmin / self.scale)

        if self.mse:
            best = torch.full([x.shape[0]], float('inf'), device=dev)
            for i in range(int(self.maxshrink * self.grid)):
                p = 1 - i / self.grid 
                xmin1 = p * xmin
                xmax1 = p * xmax
                scale1 = (xmax1 - xmin1) / self.maxq
                zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
                q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
                q -= x
                q.abs_()
                q.pow_(self.norm)
                err = torch.sum(q, 1)
                tmp = err < best
                if torch.any(tmp):
                    best[tmp] = err[tmp]
                    self.scale[tmp] = scale1[tmp]
                    self.zero[tmp] = zero1[tmp]
        if not self.perchannel:
            if weight:
                tmp = shape[0]
            else:
                tmp = shape[1] if len(shape) != 3 else shape[2]
            self.scale = self.scale.repeat(tmp)
            self.zero = self.zero.repeat(tmp)

        if weight:
            if self.grouprows > 1:
                self.scale = self.scale.unsqueeze(1).repeat(1, self.grouprows)
                self.zero = self.zero.unsqueeze(1).repeat(1, self.grouprows)
            shape = [-1] + [1] * (len(shape) - 1)
            self.scale = self.scale.reshape(shape)
            self.zero = self.zero.reshape(shape)
            return
        if len(shape) == 4:
            self.scale = self.scale.reshape((1, -1, 1, 1))
            self.zero = self.zero.reshape((1, -1, 1, 1))
        if len(shape) == 3:
            self.scale = self.scale.reshape((1, 1, -1))
            self.zero = self.zero.reshape((1, 1, -1)) 
        if len(shape) == 2:
            self.scale = self.scale.unsqueeze(0)
            self.zero = self.zero.unsqueeze(0)

    def quantize(self, x):
        if self.ready():
            return quantize(x, self.scale, self.zero, self.maxq)
        return x

    def enabled(self):
        return self.maxq > 0

    def ready(self):
        return torch.all(self.scale != 0)