update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: ec-biogpt-noised-pubmed-v3
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# ec-biogpt-noised-pubmed-v3
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.7552
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 16
|
38 |
+
- eval_batch_size: 16
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_steps: 10
|
43 |
+
- num_epochs: 5
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 1.9981 | 0.07 | 500 | 1.8163 |
|
51 |
+
| 1.7501 | 0.14 | 1000 | 1.7809 |
|
52 |
+
| 2.0623 | 0.22 | 1500 | 1.7638 |
|
53 |
+
| 1.8094 | 0.29 | 2000 | 1.7458 |
|
54 |
+
| 1.8711 | 0.36 | 2500 | 1.7326 |
|
55 |
+
| 1.6588 | 0.43 | 3000 | 1.7244 |
|
56 |
+
| 1.5469 | 0.5 | 3500 | 1.7153 |
|
57 |
+
| 1.6981 | 0.57 | 4000 | 1.7084 |
|
58 |
+
| 1.6728 | 0.65 | 4500 | 1.7025 |
|
59 |
+
| 1.8203 | 0.72 | 5000 | 1.6973 |
|
60 |
+
| 1.8318 | 0.79 | 5500 | 1.6924 |
|
61 |
+
| 1.6916 | 0.86 | 6000 | 1.6906 |
|
62 |
+
| 1.6369 | 0.93 | 6500 | 1.6816 |
|
63 |
+
| 1.4371 | 1.01 | 7000 | 1.6838 |
|
64 |
+
| 1.381 | 1.08 | 7500 | 1.6829 |
|
65 |
+
| 1.6214 | 1.15 | 8000 | 1.6846 |
|
66 |
+
| 1.6218 | 1.22 | 8500 | 1.6790 |
|
67 |
+
| 1.6278 | 1.29 | 9000 | 1.6788 |
|
68 |
+
| 1.4046 | 1.36 | 9500 | 1.6774 |
|
69 |
+
| 1.4866 | 1.44 | 10000 | 1.6728 |
|
70 |
+
| 1.4712 | 1.51 | 10500 | 1.6716 |
|
71 |
+
| 1.5896 | 1.58 | 11000 | 1.6702 |
|
72 |
+
| 1.4818 | 1.65 | 11500 | 1.6681 |
|
73 |
+
| 1.4261 | 1.72 | 12000 | 1.6638 |
|
74 |
+
| 1.5318 | 1.79 | 12500 | 1.6624 |
|
75 |
+
| 1.4814 | 1.87 | 13000 | 1.6620 |
|
76 |
+
| 1.5131 | 1.94 | 13500 | 1.6583 |
|
77 |
+
| 1.3971 | 2.01 | 14000 | 1.6806 |
|
78 |
+
| 1.4146 | 2.08 | 14500 | 1.6842 |
|
79 |
+
| 1.5739 | 2.15 | 15000 | 1.6888 |
|
80 |
+
| 1.312 | 2.23 | 15500 | 1.6857 |
|
81 |
+
| 1.4992 | 2.3 | 16000 | 1.6876 |
|
82 |
+
| 1.2725 | 2.37 | 16500 | 1.6845 |
|
83 |
+
| 1.3904 | 2.44 | 17000 | 1.6840 |
|
84 |
+
| 1.4569 | 2.51 | 17500 | 1.6855 |
|
85 |
+
| 1.4358 | 2.58 | 18000 | 1.6811 |
|
86 |
+
| 1.4747 | 2.66 | 18500 | 1.6814 |
|
87 |
+
| 1.3272 | 2.73 | 19000 | 1.6818 |
|
88 |
+
| 1.3743 | 2.8 | 19500 | 1.6756 |
|
89 |
+
| 1.3953 | 2.87 | 20000 | 1.6759 |
|
90 |
+
| 1.4173 | 2.94 | 20500 | 1.6748 |
|
91 |
+
| 1.3998 | 3.02 | 21000 | 1.7133 |
|
92 |
+
| 1.3396 | 3.09 | 21500 | 1.7205 |
|
93 |
+
| 1.1953 | 3.16 | 22000 | 1.7218 |
|
94 |
+
| 1.2047 | 3.23 | 22500 | 1.7223 |
|
95 |
+
| 1.0788 | 3.3 | 23000 | 1.7214 |
|
96 |
+
| 1.3048 | 3.37 | 23500 | 1.7230 |
|
97 |
+
| 1.3271 | 3.45 | 24000 | 1.7195 |
|
98 |
+
| 1.4236 | 3.52 | 24500 | 1.7208 |
|
99 |
+
| 1.1851 | 3.59 | 25000 | 1.7209 |
|
100 |
+
| 1.285 | 3.66 | 25500 | 1.7207 |
|
101 |
+
| 1.3013 | 3.73 | 26000 | 1.7174 |
|
102 |
+
| 1.2734 | 3.81 | 26500 | 1.7182 |
|
103 |
+
| 1.3496 | 3.88 | 27000 | 1.7168 |
|
104 |
+
| 1.3628 | 3.95 | 27500 | 1.7134 |
|
105 |
+
| 1.0063 | 4.02 | 28000 | 1.7507 |
|
106 |
+
| 1.1155 | 4.09 | 28500 | 1.7557 |
|
107 |
+
| 1.1886 | 4.16 | 29000 | 1.7571 |
|
108 |
+
| 1.1304 | 4.24 | 29500 | 1.7575 |
|
109 |
+
| 1.0328 | 4.31 | 30000 | 1.7563 |
|
110 |
+
| 1.2631 | 4.38 | 30500 | 1.7584 |
|
111 |
+
| 1.2212 | 4.45 | 31000 | 1.7564 |
|
112 |
+
| 1.1825 | 4.52 | 31500 | 1.7583 |
|
113 |
+
| 1.4374 | 4.6 | 32000 | 1.7562 |
|
114 |
+
| 1.1568 | 4.67 | 32500 | 1.7554 |
|
115 |
+
| 1.3035 | 4.74 | 33000 | 1.7565 |
|
116 |
+
| 1.27 | 4.81 | 33500 | 1.7557 |
|
117 |
+
| 1.2518 | 4.88 | 34000 | 1.7560 |
|
118 |
+
| 1.0965 | 4.95 | 34500 | 1.7552 |
|
119 |
+
|
120 |
+
|
121 |
+
### Framework versions
|
122 |
+
|
123 |
+
- Transformers 4.27.4
|
124 |
+
- Pytorch 2.0.0+cu117
|
125 |
+
- Datasets 2.11.0
|
126 |
+
- Tokenizers 0.13.3
|