Commit
·
90f60b4
1
Parent(s):
b4f8d67
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- question-answering
|
4 |
+
language:
|
5 |
+
- multilingual
|
6 |
+
- cs
|
7 |
+
- en
|
8 |
+
---
|
9 |
+
|
10 |
+
# Mt5-base for Czech+English Generative Question Answering
|
11 |
+
|
12 |
+
This is the [mt5-base](https://huggingface.co/google/mt5-base) model with an LM head for a generation of extractive answers. In contrary to our [mt5-base-priming](https://huggingface.co/gaussalgo/mt5-base-priming-QA_en-cs/edit/main/README.md), this is a traditional sequence2sequence model without priming, though can also be used on other Text extraction tasks, such as Named Entity Recognition in zero-shot settings (with a significant decay in quality, compared to priming).
|
13 |
+
|
14 |
+
## Intended uses & limitations
|
15 |
+
|
16 |
+
This model is purposed to *generate* a segment of a given context that contains an answer to a given question (Extractive Question Answering) in English and Czech.
|
17 |
+
Given the fine-tuning on two languages and a good reported zero-shot cross-lingual applicability of other fine-tuned multilingual large language models, the model will likely also work on other languages as well, with a specific decay in quality.
|
18 |
+
|
19 |
+
Note that despite its size, English SQuAD has a variety of reported biases,
|
20 |
+
conditioned by the relative position or type of the answer in the context that can affect the model's performance on new data
|
21 |
+
(see, e.g. [L. Mikula (2022)](https://is.muni.cz/th/adh58/?lang=en), Chap. 4.1).
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
Here is how to use this model to answer the question on a given context using 🤗 Transformers in PyTorch:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("gaussalgo/mt5-base-generative-QA_en-cs")
|
31 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("gaussalgo/mt5-base-generative-QA_en-cs")
|
32 |
+
|
33 |
+
context = """
|
34 |
+
Podle slovenského lidového podání byl Juro Jánošík obdařen magickými předměty (kouzelná valaška, čarovný opasek),
|
35 |
+
které mu dodávaly nadpřirozené schopnosti. Okrádal především šlechtice,
|
36 |
+
trestal panské dráby a ze svého lupu vyděloval část pro chudé, tedy bohatým bral a chudým dával.
|
37 |
+
"""
|
38 |
+
question = "Jaké schopnosti daly magické předměty Juro Jánošíkovi?"
|
39 |
+
|
40 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
41 |
+
outputs = model.generate(**inputs)
|
42 |
+
|
43 |
+
print("Answer:")
|
44 |
+
print(tokenizer.decode(outputs))
|
45 |
+
|
46 |
+
```
|
47 |
+
|
48 |
+
## Training
|
49 |
+
|
50 |
+
The model has been trained using [Adaptor library](https://github.com/gaussalgo/adaptor) v0.1.5, in parallel on both Czech and English data, with the following parameters:
|
51 |
+
|
52 |
+
```python
|
53 |
+
training_arguments = AdaptationArguments(output_dir="train_dir",
|
54 |
+
learning_rate=5e-5,
|
55 |
+
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
56 |
+
do_train=True,
|
57 |
+
do_eval=True,
|
58 |
+
warmup_steps=1000,
|
59 |
+
max_steps=100000,
|
60 |
+
gradient_accumulation_steps=4,
|
61 |
+
eval_steps=100,
|
62 |
+
logging_steps=10,
|
63 |
+
save_steps=1000,
|
64 |
+
num_train_epochs=50,
|
65 |
+
evaluation_strategy="steps",
|
66 |
+
remove_unused_columns=False)
|
67 |
+
|
68 |
+
```
|
69 |
+
|
70 |
+
You can find the full training script in [train_mt5_qa_en+cs.py](https://huggingface.co/gaussalgo/mt5-base-generative-QA_en-cs/blob/main/train_mt5_qa_en%2Bcs.py), reproducible after a specific data preprocessing for Czech SQAD in [parse_czech_squad.py](parse_czech_squad.py)
|