File size: 13,351 Bytes
93fe3be 521a42d 93fe3be 521a42d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
---
base_model:
- meta-llama/Llama-2-7b-hf
datasets:
- gasolsun/DynamicRAG-Eval-Data
language:
- en
license: apache-2.0
pipeline_tag: question-answering
library_name: transformers
---
# DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation
<div style='display:flex; gap: 0.25rem; flex-wrap: wrap; align-items: center;'>
<a href='LICENCE'>
<img src='https://img.shields.io/badge/License-Apache%202.0-g.svg'>
</a>
<a href='https://arxiv.org/abs/2505.07233'>
<img src='https://img.shields.io/badge/Paper-PDF-red'>
</a>
<a href='https://x.com/SunJiashuo36/status/1922117916788404665'>
<img src='https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40Us'>
</a>
<a href='https://huggingface.co/datasets/gasolsun/DynamicRAG-Eval-Data'>
<img src='https://img.shields.io/badge/🤗-Eval_Data-9C276A.svg' alt='eval_data'>
</a>
<a href='https://huggingface.co/gasolsun/DynamicRAG-7B'>
<img src='https://img.shields.io/badge/🤗-DynamicRAG--7B-FFD21E.svg' alt='model'>
</a>
<a href='https://huggingface.co/gasolsun/DynamicRAG-8B'>
<img src='https://img.shields.io/badge/🤗-DynamicRAG--8B-FFD21E.svg' alt='model'>
</a>
</div>
**DynamicRAG** is an innovative framework for Retrieval-Augmented Generation (RAG) that dynamically adjusts both the **order** and **number** of retrieved documents per query. A reinforcement learning (RL) agent serves as the reranker, optimizing document retrieval based on feedback from a **Large Language Model (LLM)**. The training process is divided into two main stages:
1. **Supervised Fine-Tuning (SFT) via Behavior Cloning**:
- Trains the reranker with expert trajectories.
- Simplifies the action space and establishes a baseline.
2. **Reinforcement Learning (RL) with LLM Feedback**:
- Uses interactive feedback from the generator.
- Explores improved trajectories and further optimizes the reranker.
## How to cite
If you extend or use this work, please cite the [paper](https://arxiv.org/abs/2212.07249) where it was introduced:
```
@misc{sun2025dynamicragleveragingoutputslarge,
title={DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation},
author={Jiashuo Sun and Xianrui Zhong and Sizhe Zhou and Jiawei Han},
year={2025},
eprint={2505.07233},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.07233},
}
```
## 🔥 Update
* [2025-05-13]: 🚀 We release the paper: [https://arxiv.org/abs/2505.07233](https://arxiv.org/abs/2505.07233)
* [2025-05-07]: 🚀 We release the [DynamicRAG-7B](https://huggingface.co/gasolsun/DynamicRAG-7B) and [DynamicRAG-8B](https://huggingface.co/gasolsun/DynamicRAG-8B) and [eval-datas](https://huggingface.co/datasets/gasolsun/DynamicRAG-Eval-Data).
* [2025-05-05]: 🚀 We release the code for training and evaluation.
Code: https://github.com/GasolSun36/DynamicRAG
## Table of Contents
- [DynamicRAG Overview](#dynamicrag-overview)
- [Project Visualizations](#project-visualizations)
- [📌 Data Processing Pipeline](#-data-processing-pipeline)
- [🎯 Supervised Fine-Tuning (SFT) Training](#-supervised-fine-tuning-sft-training)
- [🤖 Interactive Data Collection](#-interactive-data-collection)
- [📈 Direct Preference Optimization (DPO) Training](#-direct-preference-optimization-dpo-training)
- [🔍 Inference and Evaluation](#-inference-and-evaluation)
- [📄 Licensing and Claims](#-licensing-and-claims)
---
## DynamicRAG Overview
DynamicRAG adjusts the retrieval process on-the-fly by:
- Dynamically reordering and selecting the number of documents per query.
- Leveraging a reranker trained with RL and LLM feedback to improve retrieval quality.
---
## 💡 Preliminaries
You should install the enviroment by `pip install -r requirements.txt`, and running:
```python
apt-get update
apt-get install libtiff5
```
Moreover, you need to config the retriever corpus, e.g. official 2018 English Wikipedia embeddings. We use the exact same config with [Self-RAG](https://github.com/AkariAsai/self-rag). You can read their Retriever Setup.
## 📌 Data Processing Pipeline
Example: Training LLaMA3-8B with Top-40 Documents
### **1. Prepare BC Data Pipeline**
#### **Step 1: Retrieve Top-40 Documents**
Run the retrieval script:
```bash
#!/bin/bash
NUM_GPUS=8
INPUT_FILE="data/rag_training_data.json"
SPLIT_DIR="data/splits"
python split_data.py --input_file $INPUT_FILE --output_dir $SPLIT_DIR --num_splits $NUM_GPUS
for GPU_ID in $(seq 0 $((NUM_GPUS - 1))); do
SPLIT_FILE="${SPLIT_DIR}/split_${GPU_ID}.json"
OUTPUT_FILE="output/retrieval_split_${GPU_ID}.json"
log_file="logs/retriever_split_${GPU_ID}.log"
CUDA_VISIBLE_DEVICES=$GPU_ID python retriever.py \
--model_name_or_path models/retriever \
--passages data/psgs_w100.tsv \
--passages_embeddings "data/wikipedia_embeddings/*" \
--query $SPLIT_FILE \
--output_dir $OUTPUT_FILE \
--n_docs 50 \
1>"$log_file" 2>&1 &
echo "Started process on GPU $GPU_ID with input $SPLIT_FILE"
done
wait
echo "All processes completed."
```
#### **Step 2: Aggregate Retrieved Data**
```bash
python aggregate.py
```
#### **Step 3: Rerank Documents**
```bash
python reranker.py --model_name_or_path models/reranker/monot5 \
--input_file output/retrieval_data.jsonl \
--output_file output/retrieval_data_rerank.jsonl \
--device cuda
```
Outputs: `retrieval_data_rerank.jsonl`
> 💡 If you running above command slowly, consider running it with multi-gpus like retriever and then combine the results.
#### **Step 4: Compute True/False in Reranking**
```bash
python process_training_data.py
```
Outputs:
- `retrieval_data_rerank_sequence.json` (for Reranker BC training)
- `retrieval_data_rerank_normal.json` (for SFT & DPO training)
#### **Step 5: Convert Reranker Data for Training**
```bash
python reranker_sequence.py
```
Output: `reranker_bc_data.json` (formatted for **LLaMA-Factory**)
#### **Step 6: Split SFT & DPO Data**
```bash
python split_for_sft_dpo.py
```
#### **Step 7: Construct Generator SFT Data**
```bash
python construct_generator_sft.py
```
---
## 🎯 Supervised Fine-Tuning (SFT) Training
We use **LLaMA-Factory** as the training framework. Install it from [here](https://github.com/hiyouga/LLaMA-Factory).\
### **1. Configure `dataset_info.json`**
Modify `LLaMA-Factory/data/dataset_info.json`:
```json
{
"generator_sft": {
"file_name": "generator_sft_training.json",
"columns": {"prompt": "instruction", "query": "input", "response": "output", "system": "system"}
},
"reranker_bc": {
"file_name": "reranker_bc_training.json",
"columns": {"prompt": "instruction", "query": "input", "response": "output", "system": "system"}
},
"alpaca_data": {
"file_name": "alpaca_data_cleaned_system.json",
"columns": {"prompt": "instruction", "query": "input", "response": "output", "system": "system"}
}
}
```
### **2. Train the Model**
Modify `llama8b.yaml` and run:
```bash
llamafactory-cli train examples/train_full/llama8b.yaml
```
> 🛠️ Requires at least **8 A100-80G GPUs**.
---
## 🤖 Interactive Data Collection
We use **vLLM** for faster sampling.
### **1. Sample Interaction Trajectories**
```bash
python sampling_dpo_trajectories.py \
--template template/llama3.jinja \
--llm-model DynamicRAG_llama3_8b \
--input-jsonl training_data/training_data_dpo.jsonl \
--output-json results/training_data_dpo_sampling.json
```
### **2. Collect Rewards for Trajectories**
```bash
ython reward_trajectories.py \
--input_file results/training_data_dpo_sampling.json \
--output_file training_data/llama3_8b_output_dpo.jsonl \
```
### **3. Construct DPO Training Data**
```bash
python construct_dpo.py
```
---
## 📈 Direct Preference Optimization (DPO) Training
### **1. Configure `dataset_info.json`**
```json
{
"llama3_generator_dpo": {
"file_name": "llama3_8b_generator_dpo.json",
"ranking": true,
"columns": {"prompt": "instruction", "query": "input", "chosen": "chosen", "rejected": "rejected"}
},
"llama3_reranker_dpo": {
"file_name": "llama3_8b_reranker_dpo.json",
"ranking": true,
"columns": {"prompt": "instruction", "query": "input", "chosen": "chosen", "rejected": "rejected"}
}
}
```
### **2. Train the Model**
```bash
llamafactory-cli train examples/train_full/llama8b_dpo.yaml
```
> 🛠️ Requires at least **8 A100-80G GPUs**.
---
## 🔍 Inference and Evaluation
We use **vLLM** for efficient inference.
### **1. Run Inference**
```bash
#!/bin/bash
LOG_DIR="eval_logs"
mkdir -p $LOG_DIR
run_inference() {
local input_file=$1
local output_file=$2
local remain_output_file=$3
echo "Running inference for $input_file..."
python inference.py \
--template template/llama3.jinja \
--llm-model DynamicRAG_llama3_8b \
--input-json $input_file \
--output-json $output_file \
--remain-output-json $remain_output_file \
>> $LOG_DIR/$(basename $output_file .json)_log.txt 2>&1
sleep 5
}
run_inference "eval_data/triviaqa.jsonl" \
"results/llama3_8b_triviaqa.json" \
"results/llama3_8b_triviaqa_remain.json"
run_inference "eval_data/nq.jsonl" \
"results/llama3_8b_nq.json" \
"results/llama3_8b_nq_remain.json"
run_inference "eval_data/hotpotqa.jsonl" \
"results/llama3_8b_hotpotqa.json" \
"results/llama3_8b_hotpotqa_remain.json"
run_inference "eval_data/2wikimqa.jsonl" \
"results/llama3_8b_2wikimqa.json" \
"results/llama3_8b_2wikimqa_remain.json"
run_inference "eval_data/fever.jsonl" \
"results/llama3_8b_fever.json" \
"results/llama3_8b_fever_remain.json"
run_inference "eval_data/eli5.jsonl" \
"results/llama3_8b_eli5.json" \
"results/llama3_8b_eli5_remain.json"
run_inference "eval_data/asqa_eval_gtr_top100.jsonl" \
"results/llama3_8b_asqa.json" \
"results/llama3_8b_asqa_remain.json"
echo "All tasks completed. Logs are available in $LOG_DIR."
```
Evaluates **7 different benchmarks**.\
### **2. Evaluate Performance**
```bash
# install nltk, rouge_score, spacy
# python -m spacy download en_core_web_sm
# for example, when we evaluate nq
python evaluate.py \
--results_file results/llama3_8b_nq.json \
--metric match
```
### **3. Run DynamicRAG on 500+ Documents**
```bash
#!/bin/bash
TEMPLATE="template/llama3.jinja"
LLM_MODEL="DynamicRAG_llama3_8b"
INPUT_JSONL="eval_data/nq_top500.jsonl"
MAX_CONTEXT_WINDOW=40
TOPN_VALUES=(50 100 150 200 300 500)
for TOPN in "${TOPN_VALUES[@]}"; do
LOG_FILE="top_logs/llama3_8b_nq_top_${TOPN}.log"
python top_inference.py \
--template "$TEMPLATE" \
--llm-model "$LLM_MODEL" \
--input-jsonl "$INPUT_JSONL" \
--output-json "results/llama3_8b_top_${TOPN}_nq.json" \
--remain-output-json "results/llama3_8b_top_${TOPN}_nq_remain.json" \
--max-context-window "$MAX_CONTEXT_WINDOW" \
--topn "$TOPN" >> "$LOG_FILE" 2>&1
sleep 3
done
```
---
## Project Visualizations
Explore the key components and performance of DynamicRAG through the following images:
- **Introduction of DynamicRAG:**
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe80tx">
<img src="https://s21.ax1x.com/2025/02/05/pEe80tx.png" alt="DynamicRAG Intro" style="width:600px; height:auto;" />
</a>
</div>
- **Pipeline of DynamicRAG:**
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe86je">
<img src="https://s21.ax1x.com/2025/02/05/pEe86je.png" alt="DynamicRAG Pipeline" style="width:1000px; height:auto;" />
</a>
</div>
- **Generator Experiment:**
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe8s1O">
<img src="https://s21.ax1x.com/2025/02/05/pEe8s1O.png" alt="Generator Experiment" style="width:1000px; height:auto;" />
</a>
</div>
- **Reranker Experiment:**
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe8ycD">
<img src="https://s21.ax1x.com/2025/02/05/pEe8ycD.png" alt="Reranker Experiment" style="width:1000px; height:auto;" />
</a>
</div>
- **Efficiency of DynamicRAG:**
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe8wA1">
<img src="https://s21.ax1x.com/2025/02/05/pEe8wA1.png" alt="Efficiency" style="width:500px; height:auto;" />
</a>
</div>
- **Case Study:**
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe8r9K">
<img src="https://s21.ax1x.com/2025/02/05/pEe8r9K.png" alt="Case Study 1" style="width:600px; height:auto;" />
</a>
</div>
<div style="text-align: center;">
<a href="https://imgse.com/i/pEe8Bh6">
<img src="https://s21.ax1x.com/2025/02/05/pEe8Bh6.png" alt="Case Study 2" style="width:600px; height:auto;" />
</a>
</div>
---
## 📄 Licensing and Claims
This project is licensed under the Apache 2.0 protocol. The project assumes no legal responsibility for any output generated by the models and will not be held liable for any damages resulting from the use of the provided resources and outputs. |