gasmichel commited on
Commit
9afee78
·
verified ·
1 Parent(s): 0672bbd

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UARScene"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "config.LUARConfig",
7
+ "AutoModel": "model.UARScene"
8
+ },
9
+ "embedding_size": 512,
10
+ "model_type": "LUAR",
11
+ "torch_dtype": "float32",
12
+ "transformers_version": "4.33.2",
13
+ "use_memory_efficient_attention": false
14
+ }
.ipynb_checkpoints/config-checkpoint.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class LUARConfig(PretrainedConfig):
4
+ model_type = "LUAR"
5
+
6
+ def __init__(self,
7
+ embedding_size: int = 512,
8
+ **kwargs,
9
+ ):
10
+ self.embedding_size = embedding_size
11
+ super().__init__(**kwargs)
.ipynb_checkpoints/model-checkpoint.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from functools import partial
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from einops import rearrange, reduce, repeat
7
+ from transformers import AutoModel
8
+ import torch.nn.functional as F
9
+
10
+ # from models.layers import MemoryEfficientAttention, SelfAttention
11
+ from huggingface_hub import PyTorchModelHubMixin
12
+
13
+ from transformers import AutoModel, PreTrainedModel
14
+
15
+
16
+ class UARScene(PreTrainedModel):
17
+ """Defines the SBERT model.
18
+ """
19
+ def __init__(self, config):
20
+ super().__init__()
21
+ self.config=config
22
+ self.create_transformer()
23
+
24
+ self.linear = nn.Linear(self.hidden_size, self.config.embedding_size)
25
+
26
+ def attn_fn(self, k, q ,v) :
27
+ d_k = q.size(-1)
28
+ scores = torch.matmul(k, q.transpose(-2, -1)) / math.sqrt(d_k)
29
+ p_attn = F.softmax(scores, dim=-1)
30
+
31
+ return torch.matmul(p_attn, v)
32
+
33
+
34
+ def create_transformer(self):
35
+ """Creates the Transformer model.
36
+ """
37
+
38
+ self.transformer = AutoModel.from_pretrained("sentence-transformers/all-distilroberta-v1")
39
+ self.hidden_size = self.transformer.config.hidden_size
40
+ self.num_attention_heads = self.transformer.config.num_attention_heads
41
+ self.dim_head = self.hidden_size // self.num_attention_heads
42
+
43
+ def mean_pooling(self, token_embeddings, attention_mask):
44
+ """Mean Pooling as described in the SBERT paper.
45
+ """
46
+ input_mask_expanded = repeat(attention_mask, 'b l -> b l d', d=self.hidden_size).float()
47
+ sum_embeddings = reduce(token_embeddings * input_mask_expanded, 'b l d -> b d', 'sum')
48
+ sum_mask = torch.clamp(reduce(input_mask_expanded, 'b l d -> b d', 'sum'), min=1e-9)
49
+ return sum_embeddings / sum_mask
50
+
51
+ def get_episode_embeddings(self, data):
52
+ """Computes the Author Embedding.
53
+ """
54
+ # batch_size, num_sample_per_author, episode_length
55
+ input_ids, attention_mask = data[0].unsqueeze(1), data[1].unsqueeze(1)
56
+ B, N, E, _ = input_ids.shape
57
+
58
+ input_ids = rearrange(input_ids, 'b n e l -> (b n e) l')
59
+ attention_mask = rearrange(attention_mask, 'b n e l -> (b n e) l')
60
+
61
+ outputs = self.transformer(
62
+ input_ids=input_ids,
63
+ attention_mask=attention_mask,
64
+ return_dict=True,
65
+ output_hidden_states=True
66
+ )
67
+
68
+ # at this point, we're embedding individual "comments"
69
+ comment_embeddings = self.mean_pooling(outputs['last_hidden_state'], attention_mask)
70
+ comment_embeddings = rearrange(comment_embeddings, '(b n e) l -> (b n) e l', b=B, n=N, e=E)
71
+
72
+ # aggregate individual comments embeddings into episode embeddings
73
+ episode_embeddings = self.attn_fn(comment_embeddings, comment_embeddings, comment_embeddings)
74
+ episode_embeddings = reduce(episode_embeddings, 'b e l -> b l', 'max')
75
+
76
+ episode_embeddings = self.linear(episode_embeddings)
77
+ return episode_embeddings, comment_embeddings
78
+
79
+ def forward(self, input_ids, attention_mask):
80
+ """Calculates a fixed-length feature vector for a batch of episode samples.
81
+ """
82
+ data = [input_ids, attention_mask]
83
+ episode_embeddings,_ = self.get_episode_embeddings(data)
84
+
85
+ return episode_embeddings
86
+
87
+ def _model_forward(self, batch):
88
+ """Passes a batch of data through the model.
89
+ This is used in the lightning_trainer.py file.
90
+ """
91
+ data, _, _ = batch
92
+ episode_embeddings, comment_embeddings = self.forward(data)
93
+ # labels = torch.flatten(labels)
94
+
95
+ return episode_embeddings, comment_embeddings
config.json CHANGED
@@ -1,6 +1,14 @@
1
  {
 
 
 
 
 
 
 
2
  "embedding_size": 512,
3
- "gradient_checkpointing": false,
4
- "model_name": "sentence-transformers/all-distilroberta-v1",
5
- "model_type": "roberta"
 
6
  }
 
1
  {
2
+ "architectures": [
3
+ "UARScene"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "config.LUARConfig",
7
+ "AutoModel": "model.UARScene"
8
+ },
9
  "embedding_size": 512,
10
+ "model_type": "LUAR",
11
+ "torch_dtype": "float32",
12
+ "transformers_version": "4.33.2",
13
+ "use_memory_efficient_attention": false
14
  }
config.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class LUARConfig(PretrainedConfig):
4
+ model_type = "LUAR"
5
+
6
+ def __init__(self,
7
+ embedding_size: int = 512,
8
+ **kwargs,
9
+ ):
10
+ self.embedding_size = embedding_size
11
+ super().__init__(**kwargs)
model.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from functools import partial
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from einops import rearrange, reduce, repeat
7
+ from transformers import AutoModel
8
+ import torch.nn.functional as F
9
+
10
+ # from models.layers import MemoryEfficientAttention, SelfAttention
11
+ from huggingface_hub import PyTorchModelHubMixin
12
+
13
+ from transformers import AutoModel, PreTrainedModel
14
+
15
+
16
+ class UARScene(PreTrainedModel):
17
+ """Defines the SBERT model.
18
+ """
19
+ def __init__(self, config):
20
+ super().__init__()
21
+ self.config=config
22
+ self.create_transformer()
23
+
24
+ self.linear = nn.Linear(self.hidden_size, self.config.embedding_size)
25
+
26
+ def attn_fn(self, k, q ,v) :
27
+ d_k = q.size(-1)
28
+ scores = torch.matmul(k, q.transpose(-2, -1)) / math.sqrt(d_k)
29
+ p_attn = F.softmax(scores, dim=-1)
30
+
31
+ return torch.matmul(p_attn, v)
32
+
33
+
34
+ def create_transformer(self):
35
+ """Creates the Transformer model.
36
+ """
37
+
38
+ self.transformer = AutoModel.from_pretrained("sentence-transformers/all-distilroberta-v1")
39
+ self.hidden_size = self.transformer.config.hidden_size
40
+ self.num_attention_heads = self.transformer.config.num_attention_heads
41
+ self.dim_head = self.hidden_size // self.num_attention_heads
42
+
43
+ def mean_pooling(self, token_embeddings, attention_mask):
44
+ """Mean Pooling as described in the SBERT paper.
45
+ """
46
+ input_mask_expanded = repeat(attention_mask, 'b l -> b l d', d=self.hidden_size).float()
47
+ sum_embeddings = reduce(token_embeddings * input_mask_expanded, 'b l d -> b d', 'sum')
48
+ sum_mask = torch.clamp(reduce(input_mask_expanded, 'b l d -> b d', 'sum'), min=1e-9)
49
+ return sum_embeddings / sum_mask
50
+
51
+ def get_episode_embeddings(self, data):
52
+ """Computes the Author Embedding.
53
+ """
54
+ # batch_size, num_sample_per_author, episode_length
55
+ input_ids, attention_mask = data[0].unsqueeze(1), data[1].unsqueeze(1)
56
+ B, N, E, _ = input_ids.shape
57
+
58
+ input_ids = rearrange(input_ids, 'b n e l -> (b n e) l')
59
+ attention_mask = rearrange(attention_mask, 'b n e l -> (b n e) l')
60
+
61
+ outputs = self.transformer(
62
+ input_ids=input_ids,
63
+ attention_mask=attention_mask,
64
+ return_dict=True,
65
+ output_hidden_states=True
66
+ )
67
+
68
+ # at this point, we're embedding individual "comments"
69
+ comment_embeddings = self.mean_pooling(outputs['last_hidden_state'], attention_mask)
70
+ comment_embeddings = rearrange(comment_embeddings, '(b n e) l -> (b n) e l', b=B, n=N, e=E)
71
+
72
+ # aggregate individual comments embeddings into episode embeddings
73
+ episode_embeddings = self.attn_fn(comment_embeddings, comment_embeddings, comment_embeddings)
74
+ episode_embeddings = reduce(episode_embeddings, 'b e l -> b l', 'max')
75
+
76
+ episode_embeddings = self.linear(episode_embeddings)
77
+ return episode_embeddings, comment_embeddings
78
+
79
+ def forward(self, input_ids, attention_mask):
80
+ """Calculates a fixed-length feature vector for a batch of episode samples.
81
+ """
82
+ data = [input_ids, attention_mask]
83
+ episode_embeddings,_ = self.get_episode_embeddings(data)
84
+
85
+ return episode_embeddings
86
+
87
+ def _model_forward(self, batch):
88
+ """Passes a batch of data through the model.
89
+ This is used in the lightning_trainer.py file.
90
+ """
91
+ data, _, _ = batch
92
+ episode_embeddings, comment_embeddings = self.forward(data)
93
+ # labels = torch.flatten(labels)
94
+
95
+ return episode_embeddings, comment_embeddings