Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/config-checkpoint.json +14 -0
- .ipynb_checkpoints/config-checkpoint.py +11 -0
- .ipynb_checkpoints/model-checkpoint.py +95 -0
- config.json +11 -3
- config.py +11 -0
- model.py +95 -0
.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UARScene"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config.LUARConfig",
|
7 |
+
"AutoModel": "model.UARScene"
|
8 |
+
},
|
9 |
+
"embedding_size": 512,
|
10 |
+
"model_type": "LUAR",
|
11 |
+
"torch_dtype": "float32",
|
12 |
+
"transformers_version": "4.33.2",
|
13 |
+
"use_memory_efficient_attention": false
|
14 |
+
}
|
.ipynb_checkpoints/config-checkpoint.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class LUARConfig(PretrainedConfig):
|
4 |
+
model_type = "LUAR"
|
5 |
+
|
6 |
+
def __init__(self,
|
7 |
+
embedding_size: int = 512,
|
8 |
+
**kwargs,
|
9 |
+
):
|
10 |
+
self.embedding_size = embedding_size
|
11 |
+
super().__init__(**kwargs)
|
.ipynb_checkpoints/model-checkpoint.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange, reduce, repeat
|
7 |
+
from transformers import AutoModel
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
# from models.layers import MemoryEfficientAttention, SelfAttention
|
11 |
+
from huggingface_hub import PyTorchModelHubMixin
|
12 |
+
|
13 |
+
from transformers import AutoModel, PreTrainedModel
|
14 |
+
|
15 |
+
|
16 |
+
class UARScene(PreTrainedModel):
|
17 |
+
"""Defines the SBERT model.
|
18 |
+
"""
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__()
|
21 |
+
self.config=config
|
22 |
+
self.create_transformer()
|
23 |
+
|
24 |
+
self.linear = nn.Linear(self.hidden_size, self.config.embedding_size)
|
25 |
+
|
26 |
+
def attn_fn(self, k, q ,v) :
|
27 |
+
d_k = q.size(-1)
|
28 |
+
scores = torch.matmul(k, q.transpose(-2, -1)) / math.sqrt(d_k)
|
29 |
+
p_attn = F.softmax(scores, dim=-1)
|
30 |
+
|
31 |
+
return torch.matmul(p_attn, v)
|
32 |
+
|
33 |
+
|
34 |
+
def create_transformer(self):
|
35 |
+
"""Creates the Transformer model.
|
36 |
+
"""
|
37 |
+
|
38 |
+
self.transformer = AutoModel.from_pretrained("sentence-transformers/all-distilroberta-v1")
|
39 |
+
self.hidden_size = self.transformer.config.hidden_size
|
40 |
+
self.num_attention_heads = self.transformer.config.num_attention_heads
|
41 |
+
self.dim_head = self.hidden_size // self.num_attention_heads
|
42 |
+
|
43 |
+
def mean_pooling(self, token_embeddings, attention_mask):
|
44 |
+
"""Mean Pooling as described in the SBERT paper.
|
45 |
+
"""
|
46 |
+
input_mask_expanded = repeat(attention_mask, 'b l -> b l d', d=self.hidden_size).float()
|
47 |
+
sum_embeddings = reduce(token_embeddings * input_mask_expanded, 'b l d -> b d', 'sum')
|
48 |
+
sum_mask = torch.clamp(reduce(input_mask_expanded, 'b l d -> b d', 'sum'), min=1e-9)
|
49 |
+
return sum_embeddings / sum_mask
|
50 |
+
|
51 |
+
def get_episode_embeddings(self, data):
|
52 |
+
"""Computes the Author Embedding.
|
53 |
+
"""
|
54 |
+
# batch_size, num_sample_per_author, episode_length
|
55 |
+
input_ids, attention_mask = data[0].unsqueeze(1), data[1].unsqueeze(1)
|
56 |
+
B, N, E, _ = input_ids.shape
|
57 |
+
|
58 |
+
input_ids = rearrange(input_ids, 'b n e l -> (b n e) l')
|
59 |
+
attention_mask = rearrange(attention_mask, 'b n e l -> (b n e) l')
|
60 |
+
|
61 |
+
outputs = self.transformer(
|
62 |
+
input_ids=input_ids,
|
63 |
+
attention_mask=attention_mask,
|
64 |
+
return_dict=True,
|
65 |
+
output_hidden_states=True
|
66 |
+
)
|
67 |
+
|
68 |
+
# at this point, we're embedding individual "comments"
|
69 |
+
comment_embeddings = self.mean_pooling(outputs['last_hidden_state'], attention_mask)
|
70 |
+
comment_embeddings = rearrange(comment_embeddings, '(b n e) l -> (b n) e l', b=B, n=N, e=E)
|
71 |
+
|
72 |
+
# aggregate individual comments embeddings into episode embeddings
|
73 |
+
episode_embeddings = self.attn_fn(comment_embeddings, comment_embeddings, comment_embeddings)
|
74 |
+
episode_embeddings = reduce(episode_embeddings, 'b e l -> b l', 'max')
|
75 |
+
|
76 |
+
episode_embeddings = self.linear(episode_embeddings)
|
77 |
+
return episode_embeddings, comment_embeddings
|
78 |
+
|
79 |
+
def forward(self, input_ids, attention_mask):
|
80 |
+
"""Calculates a fixed-length feature vector for a batch of episode samples.
|
81 |
+
"""
|
82 |
+
data = [input_ids, attention_mask]
|
83 |
+
episode_embeddings,_ = self.get_episode_embeddings(data)
|
84 |
+
|
85 |
+
return episode_embeddings
|
86 |
+
|
87 |
+
def _model_forward(self, batch):
|
88 |
+
"""Passes a batch of data through the model.
|
89 |
+
This is used in the lightning_trainer.py file.
|
90 |
+
"""
|
91 |
+
data, _, _ = batch
|
92 |
+
episode_embeddings, comment_embeddings = self.forward(data)
|
93 |
+
# labels = torch.flatten(labels)
|
94 |
+
|
95 |
+
return episode_embeddings, comment_embeddings
|
config.json
CHANGED
@@ -1,6 +1,14 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"embedding_size": 512,
|
3 |
-
"
|
4 |
-
"
|
5 |
-
"
|
|
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"architectures": [
|
3 |
+
"UARScene"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config.LUARConfig",
|
7 |
+
"AutoModel": "model.UARScene"
|
8 |
+
},
|
9 |
"embedding_size": 512,
|
10 |
+
"model_type": "LUAR",
|
11 |
+
"torch_dtype": "float32",
|
12 |
+
"transformers_version": "4.33.2",
|
13 |
+
"use_memory_efficient_attention": false
|
14 |
}
|
config.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class LUARConfig(PretrainedConfig):
|
4 |
+
model_type = "LUAR"
|
5 |
+
|
6 |
+
def __init__(self,
|
7 |
+
embedding_size: int = 512,
|
8 |
+
**kwargs,
|
9 |
+
):
|
10 |
+
self.embedding_size = embedding_size
|
11 |
+
super().__init__(**kwargs)
|
model.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange, reduce, repeat
|
7 |
+
from transformers import AutoModel
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
# from models.layers import MemoryEfficientAttention, SelfAttention
|
11 |
+
from huggingface_hub import PyTorchModelHubMixin
|
12 |
+
|
13 |
+
from transformers import AutoModel, PreTrainedModel
|
14 |
+
|
15 |
+
|
16 |
+
class UARScene(PreTrainedModel):
|
17 |
+
"""Defines the SBERT model.
|
18 |
+
"""
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__()
|
21 |
+
self.config=config
|
22 |
+
self.create_transformer()
|
23 |
+
|
24 |
+
self.linear = nn.Linear(self.hidden_size, self.config.embedding_size)
|
25 |
+
|
26 |
+
def attn_fn(self, k, q ,v) :
|
27 |
+
d_k = q.size(-1)
|
28 |
+
scores = torch.matmul(k, q.transpose(-2, -1)) / math.sqrt(d_k)
|
29 |
+
p_attn = F.softmax(scores, dim=-1)
|
30 |
+
|
31 |
+
return torch.matmul(p_attn, v)
|
32 |
+
|
33 |
+
|
34 |
+
def create_transformer(self):
|
35 |
+
"""Creates the Transformer model.
|
36 |
+
"""
|
37 |
+
|
38 |
+
self.transformer = AutoModel.from_pretrained("sentence-transformers/all-distilroberta-v1")
|
39 |
+
self.hidden_size = self.transformer.config.hidden_size
|
40 |
+
self.num_attention_heads = self.transformer.config.num_attention_heads
|
41 |
+
self.dim_head = self.hidden_size // self.num_attention_heads
|
42 |
+
|
43 |
+
def mean_pooling(self, token_embeddings, attention_mask):
|
44 |
+
"""Mean Pooling as described in the SBERT paper.
|
45 |
+
"""
|
46 |
+
input_mask_expanded = repeat(attention_mask, 'b l -> b l d', d=self.hidden_size).float()
|
47 |
+
sum_embeddings = reduce(token_embeddings * input_mask_expanded, 'b l d -> b d', 'sum')
|
48 |
+
sum_mask = torch.clamp(reduce(input_mask_expanded, 'b l d -> b d', 'sum'), min=1e-9)
|
49 |
+
return sum_embeddings / sum_mask
|
50 |
+
|
51 |
+
def get_episode_embeddings(self, data):
|
52 |
+
"""Computes the Author Embedding.
|
53 |
+
"""
|
54 |
+
# batch_size, num_sample_per_author, episode_length
|
55 |
+
input_ids, attention_mask = data[0].unsqueeze(1), data[1].unsqueeze(1)
|
56 |
+
B, N, E, _ = input_ids.shape
|
57 |
+
|
58 |
+
input_ids = rearrange(input_ids, 'b n e l -> (b n e) l')
|
59 |
+
attention_mask = rearrange(attention_mask, 'b n e l -> (b n e) l')
|
60 |
+
|
61 |
+
outputs = self.transformer(
|
62 |
+
input_ids=input_ids,
|
63 |
+
attention_mask=attention_mask,
|
64 |
+
return_dict=True,
|
65 |
+
output_hidden_states=True
|
66 |
+
)
|
67 |
+
|
68 |
+
# at this point, we're embedding individual "comments"
|
69 |
+
comment_embeddings = self.mean_pooling(outputs['last_hidden_state'], attention_mask)
|
70 |
+
comment_embeddings = rearrange(comment_embeddings, '(b n e) l -> (b n) e l', b=B, n=N, e=E)
|
71 |
+
|
72 |
+
# aggregate individual comments embeddings into episode embeddings
|
73 |
+
episode_embeddings = self.attn_fn(comment_embeddings, comment_embeddings, comment_embeddings)
|
74 |
+
episode_embeddings = reduce(episode_embeddings, 'b e l -> b l', 'max')
|
75 |
+
|
76 |
+
episode_embeddings = self.linear(episode_embeddings)
|
77 |
+
return episode_embeddings, comment_embeddings
|
78 |
+
|
79 |
+
def forward(self, input_ids, attention_mask):
|
80 |
+
"""Calculates a fixed-length feature vector for a batch of episode samples.
|
81 |
+
"""
|
82 |
+
data = [input_ids, attention_mask]
|
83 |
+
episode_embeddings,_ = self.get_episode_embeddings(data)
|
84 |
+
|
85 |
+
return episode_embeddings
|
86 |
+
|
87 |
+
def _model_forward(self, batch):
|
88 |
+
"""Passes a batch of data through the model.
|
89 |
+
This is used in the lightning_trainer.py file.
|
90 |
+
"""
|
91 |
+
data, _, _ = batch
|
92 |
+
episode_embeddings, comment_embeddings = self.forward(data)
|
93 |
+
# labels = torch.flatten(labels)
|
94 |
+
|
95 |
+
return episode_embeddings, comment_embeddings
|