First local run
Browse files- README.md +2 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +3 -3
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
@@ -20,6 +20,7 @@ model-index:
|
|
20 |
type: LunarLander-v2
|
21 |
---
|
22 |
|
|
|
23 |
# **PPO** Agent playing **LunarLander-v2**
|
24 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 166.02 +/- 30.89
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
20 |
type: LunarLander-v2
|
21 |
---
|
22 |
|
23 |
+
|
24 |
# **PPO** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1c28dbea70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1c28dbeb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1c28dbeb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1c28dbec20>", "_build": "<function ActorCriticPolicy._build at 0x7f1c28dbecb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1c28dbed40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1c28dbedd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1c28dbee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1c28dbeef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1c28dbef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1c28dc3050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1c28e09ae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651693252.960681, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABNRb32rHe6oDXYusDMK7ZxyoA6GI31OQAAgD8AAIA/ohqFvrRanj99h0y+diGLvjTYSb6FqXI9AAAAAAAAAACaMXE8kAyhPxXiQz2syq6+U62cvMYf2jwAAAAAAAAAAABJ8733gng/uea5vaHWKL6+pxe9Sx9gPQAAAAAAAAAATbXaPfYUWLrnlMo7HZjYvJ5+YjsYmL09AACAPwAAAABmagO8oGSwPxJtZry0FZy+Xgkduo56jr0AAAAAAAAAAHbBjD6P3VI7eJJ4PHPTeDzrl/w83pNwPAAAgD8AAIA/uo85vte0cTxntMQ6sXMLucOCB77FZvu5AACAPwAAgD8zQfQ8J3guPsBozDyCfYi+y0eHvZe6NLwAAAAAAAAAAOjbir4Vuok/iAoSvxFEmb5Le2K+NkFgvgAAAAAAAAAAJra0vY+eVrpmOBY6TadQNX6FKDoO2ym5AACAPwAAgD/N8Zo9hWfmuzZ9tzz11I48eXZCPXNBcL0AAIA/AACAP7Mqfb1ck0u6swZmu00XjzVlRrw6Brp8OgAAgD8AAIA/03Kjvlg1nD9T/B2+QWqJvtybMr6ieAs+AAAAAAAAAABmaqu8uJbiuSbdCTpQ1fa1b0dmOgXlI7kAAIA/AACAP4AZ2D4Omlk/2usYPrsTmL6LaYE+7nfdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN94dGSsaYECUhpRSlIwBbJRN6AOMAXSUR0CEMd1K5CnhdX2UKGgGaAloD0MIx/KuekAfYkCUhpRSlGgVTegDaBZHQISB3F72L511fZQoaAZoCWgPQwgs9MEyNm9fQJSGlFKUaBVN6ANoFkdAhIjXjU/fO3V9lChoBmgJaA9DCMu76gHzgF5AlIaUUpRoFU3oA2gWR0CEjMMkQf6odX2UKGgGaAloD0MI0/iFV5LPW0CUhpRSlGgVTegDaBZHQISQVK/VRUF1fZQoaAZoCWgPQwgjhbLwdQtgQJSGlFKUaBVN6ANoFkdAhJDQ9zOopHV9lChoBmgJaA9DCLTmx1/aU2RAlIaUUpRoFU3oA2gWR0CEkX3vhIe6dX2UKGgGaAloD0MIxLRv7q82QcCUhpRSlGgVTRwBaBZHQISX6ESM98t1fZQoaAZoCWgPQwibAMPy5z9ZQJSGlFKUaBVN6ANoFkdAhJ9XDvVmSXV9lChoBmgJaA9DCFmFzQAXnFtAlIaUUpRoFU3oA2gWR0CEo6gbIcR2dX2UKGgGaAloD0MIiPVGrTDcY0CUhpRSlGgVTegDaBZHQIStpRTCLuR1fZQoaAZoCWgPQwj1Se6wiewdQJSGlFKUaBVNmAFoFkdAhLDdgfEGaHV9lChoBmgJaA9DCCvc8pGUrFtAlIaUUpRoFU3oA2gWR0CE3pOZ9d/sdX2UKGgGaAloD0MI/n+cMGE07r+UhpRSlGgVTSUBaBZHQITkfaL4vex1fZQoaAZoCWgPQwgFTyFX6lEgQJSGlFKUaBVNewFoFkdAhOh9Hc1wYXV9lChoBmgJaA9DCOrNqPkqyVZAlIaUUpRoFU3oA2gWR0CE9Rg2Ifr9dX2UKGgGaAloD0MIymsldJe2WkCUhpRSlGgVTegDaBZHQIT+8sWfseJ1fZQoaAZoCWgPQwgY7lwY6RFPQJSGlFKUaBVN6ANoFkdAhP/rKNhmXnV9lChoBmgJaA9DCLgjnBa8yV1AlIaUUpRoFU3oA2gWR0CFJX9uxbB5dX2UKGgGaAloD0MInfUpx2S4XUCUhpRSlGgVTegDaBZHQIVzUs189fV1fZQoaAZoCWgPQwgOg/krZO1VQJSGlFKUaBVN6ANoFkdAhXsFRxcVxnV9lChoBmgJaA9DCPXVVYFaUGFAlIaUUpRoFU3oA2gWR0CFf1MotthvdX2UKGgGaAloD0MIEqRS7Og8YkCUhpRSlGgVTegDaBZHQIWDKpHZsbh1fZQoaAZoCWgPQwgtQxzr4rleQJSGlFKUaBVN6ANoFkdAhYOr9l2/z3V9lChoBmgJaA9DCOay0Tk/kl1AlIaUUpRoFU3oA2gWR0CFhFOoHcDbdX2UKGgGaAloD0MI1nH8UGmkZECUhpRSlGgVTegDaBZHQIWKoJJGvwF1fZQoaAZoCWgPQwig/x68dp9fQJSGlFKUaBVN6ANoFkdAhZF5hKDkEXV9lChoBmgJaA9DCE/N5QZDtlxAlIaUUpRoFU3oA2gWR0CFoeW+GoJidX2UKGgGaAloD0MIo+pXOh/4SMCUhpRSlGgVTSABaBZHQIWllvl2eQN1fZQoaAZoCWgPQwinIarw5yBgQJSGlFKUaBVN6ANoFkdAhc33jENvwXV9lChoBmgJaA9DCD3VITdDH2VAlIaUUpRoFU3oA2gWR0CF02y+pOvddX2UKGgGaAloD0MIu31WmSkvWkCUhpRSlGgVTegDaBZHQIXXFpAUtZp1fZQoaAZoCWgPQwikG2FRkR5jQJSGlFKUaBVN6ANoFkdAheKN7SiM53V9lChoBmgJaA9DCOjAcoQMI1pAlIaUUpRoFU3oA2gWR0CF67acI7eVdX2UKGgGaAloD0MINfCjGvZ5X0CUhpRSlGgVTegDaBZHQIXsndbgTAZ1fZQoaAZoCWgPQwgF+dnIdas9wJSGlFKUaBVL9WgWR0CGAGu6ErXldX2UKGgGaAloD0MI8ZvCSgUvV0CUhpRSlGgVTegDaBZHQIYQD8pCrtF1fZQoaAZoCWgPQwgXDK65o2FNQJSGlFKUaBVN6ANoFkdAhl2AQYk3THV9lChoBmgJaA9DCDHNdK+TIjnAlIaUUpRoFU04AWgWR0CGYCkqMFUydX2UKGgGaAloD0MIkgiNYOPxVECUhpRSlGgVTegDaBZHQIZpH6VMVUN1fZQoaAZoCWgPQwh+p8mMNyJgQJSGlFKUaBVN6ANoFkdAhm0HXVbzLHV9lChoBmgJaA9DCIhodAex21NAlIaUUpRoFU3oA2gWR0CGbYliSaE0dX2UKGgGaAloD0MIOGvwviqaWkCUhpRSlGgVTegDaBZHQIZuLvLHMll1fZQoaAZoCWgPQwiaJ9cUyAdhQJSGlFKUaBVN6ANoFkdAhnUJWNm16XV9lChoBmgJaA9DCDxnCwitqzfAlIaUUpRoFU0+AWgWR0CGdU7uDzy0dX2UKGgGaAloD0MIEXLe/8f8WkCUhpRSlGgVTegDaBZHQIZ8JyOq//N1fZQoaAZoCWgPQwjxf0dUqOBEQJSGlFKUaBVN6ANoFkdAho135nDiwXV9lChoBmgJaA9DCFA5Jov7/VtAlIaUUpRoFU3oA2gWR0CGkXEG7jDLdX2UKGgGaAloD0MIJUG4AgplHMCUhpRSlGgVTTQBaBZHQIac/a+N96V1fZQoaAZoCWgPQwgVHF4QkV41QJSGlFKUaBVNRQFoFkdAhp6k61b7j3V9lChoBmgJaA9DCBCU2/Y9avs/lIaUUpRoFU1VAWgWR0CGqlBDXvphdX2UKGgGaAloD0MIAyfbwB3nWUCUhpRSlGgVTegDaBZHQIa2qNwR5C51fZQoaAZoCWgPQwg/yR02kapbQJSGlFKUaBVN6ANoFkdAhr6+umrKeXV9lChoBmgJaA9DCIkK1c3FSFpAlIaUUpRoFU3oA2gWR0CGyUIfKZDzdX2UKGgGaAloD0MIz4WRXtRUYECUhpRSlGgVTegDaBZHQIbSl5Qgs9V1fZQoaAZoCWgPQwgXnpeKjakRwJSGlFKUaBVL0GgWR0CG5D9QXQ+mdX2UKGgGaAloD0MISFFn7iGDXUCUhpRSlGgVTegDaBZHQIb4Ch37k4p1fZQoaAZoCWgPQwioNjgR/bI1QJSGlFKUaBVL+2gWR0CHAsNDMNc4dX2UKGgGaAloD0MIDmlU4GSHX0CUhpRSlGgVTegDaBZHQIdE/1xsEaF1fZQoaAZoCWgPQwh7LlOTYNRgQJSGlFKUaBVN6ANoFkdAh0esEq2BrnV9lChoBmgJaA9DCPBN02cH/FpAlIaUUpRoFU3oA2gWR0CHUCGh24d7dX2UKGgGaAloD0MIp5TXSmhJYECUhpRSlGgVTegDaBZHQIdUWJvYODt1fZQoaAZoCWgPQwjWGd8XF+piQJSGlFKUaBVN6ANoFkdAh1wT4+KTCHV9lChoBmgJaA9DCAZjRKLQXVlAlIaUUpRoFU3oA2gWR0CHY4nzg/C7dX2UKGgGaAloD0MI7iQi/AteYUCUhpRSlGgVTegDaBZHQId1w065oXd1fZQoaAZoCWgPQwg4TDRIwedeQJSGlFKUaBVN6ANoFkdAh3mplrdnCnV9lChoBmgJaA9DCIj029eBJ1ZAlIaUUpRoFU3oA2gWR0CHhUH2RJVbdX2UKGgGaAloD0MIXfsCeuFnYkCUhpRSlGgVTegDaBZHQIeG2EmICU51fZQoaAZoCWgPQwjNrKWAtCRbQJSGlFKUaBVN6ANoFkdAh5IBr30wrXV9lChoBmgJaA9DCP9eCg+agmFAlIaUUpRoFU3oA2gWR0CHnTakAPupdX2UKGgGaAloD0MIzjP2JRuvNECUhpRSlGgVTRwBaBZHQIejyMDOkcl1fZQoaAZoCWgPQwgPe6GA7X9gQJSGlFKUaBVN6ANoFkdAh67IH9m6G3V9lChoBmgJaA9DCC/84HzqVWlAlIaUUpRoFU0oAmgWR0CHvNIkJKJ3dX2UKGgGaAloD0MIv/OLEvRqXUCUhpRSlGgVTegDaBZHQIfHqQ3gk1N1fZQoaAZoCWgPQwgI51PHKvpdQJSGlFKUaBVN6ANoFkdAh9jHbRF7U3V9lChoBmgJaA9DCFjGhm72PFxAlIaUUpRoFU3oA2gWR0CH4gNOuaF3dX2UKGgGaAloD0MIZOWXwRiCYECUhpRSlGgVTegDaBZHQIfo5yS3b211fZQoaAZoCWgPQwhaSMDo8lpcQJSGlFKUaBVN6ANoFkdAh+sstkFwDXV9lChoBmgJaA9DCFSthVno7mNAlIaUUpRoFU3oA2gWR0CILiREF4cFdX2UKGgGaAloD0MI8ddkjXpUYECUhpRSlGgVTegDaBZHQIgyBMlC1JF1fZQoaAZoCWgPQwhZ2xSPi2ViQJSGlFKUaBVN6ANoFkdAiDlxqwhW53V9lChoBmgJaA9DCMMtH0lJDUNAlIaUUpRoFUv3aBZHQIg7dDa4+bF1fZQoaAZoCWgPQwjPnsvUJPBaQJSGlFKUaBVN6ANoFkdAiFetITXarXV9lChoBmgJaA9DCIGYhAt5qmJAlIaUUpRoFU3oA2gWR0CIZPpKSPludX2UKGgGaAloD0MIT6+UZQhEYECUhpRSlGgVTegDaBZHQIhm5XU6PsB1fZQoaAZoCWgPQwjusfShCx9dQJSGlFKUaBVN6ANoFkdAiHNaxgRbr3V9lChoBmgJaA9DCIsWoG01K19AlIaUUpRoFU3oA2gWR0CIf8V32VVxdX2UKGgGaAloD0MIMjuL3qmZWUCUhpRSlGgVTegDaBZHQIiGj8P4EfV1fZQoaAZoCWgPQwi45/nTRiJdQJSGlFKUaBVN6ANoFkdAiJI3qiXY2HV9lChoBmgJaA9DCAQb17/rYzJAlIaUUpRoFU03AWgWR0CInALGaQV9dX2UKGgGaAloD0MIS3hCrz8RJECUhpRSlGgVS+loFkdAiJxWaDwpfHV9lChoBmgJaA9DCMnH7gIlnGNAlIaUUpRoFU3oA2gWR0CIoNmmtQsPdX2UKGgGaAloD0MI4978honRXkCUhpRSlGgVTegDaBZHQIirtliBoVV1fZQoaAZoCWgPQwiJm1PJAHBbQJSGlFKUaBVN6ANoFkdAiMeMDGLk0nV9lChoBmgJaA9DCPKxu0DJI2pAlIaUUpRoFU10AWgWR0CIx9DMvAXVdX2UKGgGaAloD0MIajLjbaUnOECUhpRSlGgVTTMBaBZHQIjIJJI1+Ap1fZQoaAZoCWgPQwjXvRWJCcRHQJSGlFKUaBVNAAFoFkdAiMj4sNDtxHV9lChoBmgJaA9DCBegbTXrx1tAlIaUUpRoFU3oA2gWR0CIzisDnvDxdX2UKGgGaAloD0MIOgX52chFXECUhpRSlGgVTegDaBZHQIjQULtu1nd1fZQoaAZoCWgPQwgcDHVY4dYdwJSGlFKUaBVNGAFoFkdAiNDjyOJcgXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000024E0FFDC700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000024E0FFDC790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000024E0FFDC820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000024E0FFDC8B0>", "_build": "<function ActorCriticPolicy._build at 0x0000024E0FFDC940>", "forward": "<function ActorCriticPolicy.forward at 0x0000024E0FFDC9D0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000024E0FFDCA60>", "_predict": "<function ActorCriticPolicy._predict at 0x0000024E0FFDCAF0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000024E0FFDCB80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000024E0FFDCC10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000024E0FFDCCA0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000024E0FFBB630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651701539.4540756, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaObj0p4H66Du55u97sEbeD+lU7iRSQOgAAgD8AAIA/AEdnvUk1sz/5kC2/5ckcvizkXDzUU669AAAAAAAAAAAmxMC9eyiEuguT0DsVzQa2428Auy1oBbUAAIA/AACAPxq0kr0U8Kq6RoZ1O+8t2zU4Gqm5JtKMugAAgD8AAIA/M+Q6vi4+gLxBDTa7YtKBO1v22D1GtVC8AACAPwAAgD+a5T48j055ukbSCzyyXTI37V9IOzaaITYAAIA/AACAP9Ztar4wFIk/nKwQv/K8pL4vwe29kIlOvgAAAAAAAAAAutwAvrp/Rj9mjv89FnAjvr7F2Tx2uqQ8AAAAAAAAAAA6g5I+341aP/Uw0r3G+1m+90e/Pe0rzjwAAAAAAAAAAAD8v7xsxaQ/AuDRPfP4kL7I3Qy+ch3LPQAAAAAAAAAA5gxIvtuAibwZ06+6YFTyuDtl/D36CN05AACAPwAAgD8aW7M9FJSjuqPfubpuSK83SHNSupnVxDkAAIA/AACAPwBMWD03Lsc+8BgnPQ4YPr6PCg+86yatPQAAAAAAAAAAU3k7PlQBlryOtJg8sPsVu9fXBr5uPu67AACAPwAAgD8gfQa+O8aBPabBjDzZKCK+F8KGvKZkJD0AAAAAAAAAABPCoj7y4ZM/rZKAvo6GdL4PB+u8yEZzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3J+LhowiUkCUhpRSlIwBbJRN6AOMAXSUR0B9A4HRkVesdX2UKGgGaAloD0MIUWhZ9481XUCUhpRSlGgVTegDaBZHQH0W7lJYkmh1fZQoaAZoCWgPQwjEl4kipMBEwJSGlFKUaBVNZAFoFkdAfRfGVRk3CXV9lChoBmgJaA9DCNcWnpeKeVJAlIaUUpRoFU3oA2gWR0B9L0C5mRNidX2UKGgGaAloD0MIZ2FPO/y8WUCUhpRSlGgVTegDaBZHQH0ygh0Qsf91fZQoaAZoCWgPQwiOzCN/sMViQJSGlFKUaBVN6ANoFkdAfa7c6/7BPHV9lChoBmgJaA9DCL1UbMzrmVpAlIaUUpRoFU3oA2gWR0B9yetcOby6dX2UKGgGaAloD0MIeLZHb7jZV0CUhpRSlGgVTegDaBZHQH3RA1ivxH51fZQoaAZoCWgPQwjAeAYN/UdUQJSGlFKUaBVN6ANoFkdAfdz7Dl5nlHV9lChoBmgJaA9DCO0ozlFHbllAlIaUUpRoFU3oA2gWR0B94j3ztkWidX2UKGgGaAloD0MIIO1/gLV6XECUhpRSlGgVTegDaBZHQH3tf8Muvll1fZQoaAZoCWgPQwga/Wg4ZW71v5SGlFKUaBVNCAFoFkdAfhTw+t8uz3V9lChoBmgJaA9DCCld+pek81lAlIaUUpRoFU3oA2gWR0B+Fh0xM36zdX2UKGgGaAloD0MIlN3M6EeCYECUhpRSlGgVTegDaBZHQH4WXNLUTct1fZQoaAZoCWgPQwiwrZ/+M35mQJSGlFKUaBVNdgNoFkdAfhnXYDklu3V9lChoBmgJaA9DCDI+zF62hV1AlIaUUpRoFU3oA2gWR0B+LRmXgLqmdX2UKGgGaAloD0MISZ9W0R80VkCUhpRSlGgVTegDaBZHQH5B7I91U2l1fZQoaAZoCWgPQwi4IjFBDRZgQJSGlFKUaBVN6ANoFkdAflLiPyTY/XV9lChoBmgJaA9DCJMcsKvJfl5AlIaUUpRoFU3oA2gWR0B+Zk+fRNRFdX2UKGgGaAloD0MIAB5RobrMVECUhpRSlGgVTegDaBZHQH5nNWhh6Sl1fZQoaAZoCWgPQwjWbrvQ3K1gQJSGlFKUaBVN6ANoFkdAfn4PepGWlnV9lChoBmgJaA9DCF0XfnA+r1xAlIaUUpRoFU3oA2gWR0B+gTAnDziCdX2UKGgGaAloD0MIa2CrBIsJVUCUhpRSlGgVTegDaBZHQH8yorjHXEt1fZQoaAZoCWgPQwiXOPJAZDVZQJSGlFKUaBVN6ANoFkdAf0ueyiVSoHV9lChoBmgJaA9DCPjDz38PuWBAlIaUUpRoFU3oA2gWR0B/UnTPSlWPdX2UKGgGaAloD0MIG/M64hD1Y0CUhpRSlGgVTegDaBZHQH9kT1bqyGB1fZQoaAZoCWgPQwgAOzdtxsBdQJSGlFKUaBVN6ANoFkdAf3BUILPUrnV9lChoBmgJaA9DCPUtc7osHENAlIaUUpRoFU1HAWgWR0B/dhdWyTpxdX2UKGgGaAloD0MIbXNjekJRZECUhpRSlGgVTVgDaBZHQH+OyQo1DSh1fZQoaAZoCWgPQwi2vHK97TpjQJSGlFKUaBVN6ANoFkdAf5Q7QLNOd3V9lChoBmgJaA9DCPUUOUTcQFVAlIaUUpRoFU3oA2gWR0B/lUBZIQOGdX2UKGgGaAloD0MIXaRQFr5yYUCUhpRSlGgVTegDaBZHQH+VdLg4wRJ1fZQoaAZoCWgPQwgJGjOJespbQJSGlFKUaBVN6ANoFkdAf5hxHoX9BXV9lChoBmgJaA9DCJSJWwUx0DZAlIaUUpRoFU0yAWgWR0B/sDFglWwNdX2UKGgGaAloD0MI3QvMCkVeMMCUhpRSlGgVTVQBaBZHQH+xGbwz+FV1fZQoaAZoCWgPQwiPF9LhIa1dQJSGlFKUaBVN6ANoFkdAf7tIqLCN0nV9lChoBmgJaA9DCL/09ueiCVZAlIaUUpRoFU3oA2gWR0B/yNeb/ffodX2UKGgGaAloD0MI0xOWeEChQkCUhpRSlGgVTS4BaBZHQH/MjHbRF7V1fZQoaAZoCWgPQwj4bYjxmr81wJSGlFKUaBVNQQFoFkdAf9AAskIHDHV9lChoBmgJaA9DCLPTD+oiHV5AlIaUUpRoFU3oA2gWR0B/2MS9M9KVdX2UKGgGaAloD0MIi1HX2vuSWECUhpRSlGgVTegDaBZHQH/ZhTwUg0V1fZQoaAZoCWgPQwi2ZisvedlgQJSGlFKUaBVN6ANoFkdAf+zPqcEvCnV9lChoBmgJaA9DCG9JDtjVYE1AlIaUUpRoFU3oA2gWR0B/76I55qubdX2UKGgGaAloD0MIrFPle0aSEkCUhpRSlGgVTQIBaBZHQIBAT4cm0E51fZQoaAZoCWgPQwjj32dcOP9eQJSGlFKUaBVN6ANoFkdAgEHZoXbdrXV9lChoBmgJaA9DCKio+pVO2WJAlIaUUpRoFU3oA2gWR0CARUsXBP9DdX2UKGgGaAloD0MIWfrQBfUtOsCUhpRSlGgVTVsBaBZHQIBJ/D+BH091fZQoaAZoCWgPQwjcf2Q69PtiQJSGlFKUaBVN6ANoFkdAgE3hCdBjWnV9lChoBmgJaA9DCM5SspyEbllAlIaUUpRoFU3oA2gWR0CAZHLcKw6idX2UKGgGaAloD0MI46WbxCDvZECUhpRSlGgVTegDaBZHQIBnQ/A0sOJ1fZQoaAZoCWgPQwiIuaRquxRjQJSGlFKUaBVN6ANoFkdAgGms3IdU83V9lChoBmgJaA9DCLTIdr4f0mZAlIaUUpRoFU3oA2gWR0CAd0Hj6vaDdX2UKGgGaAloD0MIgbG+gckzXECUhpRSlGgVTegDaBZHQIB3ztgKF7F1fZQoaAZoCWgPQwioyCHi5pQHwJSGlFKUaBVL5GgWR0CAe/P/rB0qdX2UKGgGaAloD0MI5E1+i871YUCUhpRSlGgVTegDaBZHQIB9o84gieN1fZQoaAZoCWgPQwiRDg9h/HxgQJSGlFKUaBVN6ANoFkdAgITD8Lron3V9lChoBmgJaA9DCN+pgHseh2BAlIaUUpRoFU3oA2gWR0CAhqxfOUt7dX2UKGgGaAloD0MIa+9TVeh3YECUhpRSlGgVTegDaBZHQICIXk5p8F91fZQoaAZoCWgPQwhXJCaoYa5jQJSGlFKUaBVN6ANoFkdAgJbI/7iyZHV9lChoBmgJaA9DCNyhYTFqvGNAlIaUUpRoFU3oA2gWR0CAmDRoh6jWdX2UKGgGaAloD0MIDhZO0vyx9z+UhpRSlGgVTRcBaBZHQICfsvboKUp1fZQoaAZoCWgPQwiaB7DIr785QJSGlFKUaBVNBQFoFkdAgJ/S1Vo6CHV9lChoBmgJaA9DCIl+bf109mdAlIaUUpRoFU2ZAWgWR0CA3jo/zJ6qdX2UKGgGaAloD0MIpu1fWWnLXkCUhpRSlGgVTegDaBZHQIDgMNvwVj91fZQoaAZoCWgPQwgqqn6l89JiQJSGlFKUaBVN6ANoFkdAgOFrMcIZ63V9lChoBmgJaA9DCD2YFB+fEWFAlIaUUpRoFU3oA2gWR0CA5HJ5E+gUdX2UKGgGaAloD0MIsg3cgTpbZECUhpRSlGgVTegDaBZHQIDpRHI6r/91fZQoaAZoCWgPQwhJDtjVZHRhQJSGlFKUaBVN6ANoFkdAgO0zBAOav3V9lChoBmgJaA9DCFcKgVziMFtAlIaUUpRoFU3oA2gWR0CBBMJTl1bJdX2UKGgGaAloD0MIhbUxdkLfYECUhpRSlGgVTegDaBZHQIEHU7r9l3B1fZQoaAZoCWgPQwj/rs+c9akiwJSGlFKUaBVNTgFoFkdAgQsIwudwvXV9lChoBmgJaA9DCE+uKZDZF2FAlIaUUpRoFU3oA2gWR0CBFdjuKGcndX2UKGgGaAloD0MIiNaKNsf6X0CUhpRSlGgVTegDaBZHQIEWZX6qKgt1fZQoaAZoCWgPQwifILHdvbNjQJSGlFKUaBVN6ANoFkdAgRv6vq1PWXV9lChoBmgJaA9DCIgP7Pgva11AlIaUUpRoFU3oA2gWR0CBJtapxWDIdX2UKGgGaAloD0MIcRsN4C2ALkCUhpRSlGgVTUsBaBZHQIEpnBFd9lV1fZQoaAZoCWgPQwiKr3YU52gnQJSGlFKUaBVNJQFoFkdAgTPSRr8BMnV9lChoBmgJaA9DCAqjWdm+tmJAlIaUUpRoFU3oA2gWR0CBNmT0QK8ddX2UKGgGaAloD0MIcCamC7EVWkCUhpRSlGgVTegDaBZHQIE30CNjsld1fZQoaAZoCWgPQwiYio15nXBhQJSGlFKUaBVN6ANoFkdAgT7isGPgenV9lChoBmgJaA9DCKK2DaMg41tAlIaUUpRoFU3oA2gWR0CBPwJqqOtGdX2UKGgGaAloD0MIfCdmvZhlYECUhpRSlGgVTegDaBZHQIF9G8ujASF1fZQoaAZoCWgPQwhS19r71EliQJSGlFKUaBVN6ANoFkdAgX6+F10T13V9lChoBmgJaA9DCHkCYadYUmFAlIaUUpRoFU3oA2gWR0CBf8gi/wiJdX2UKGgGaAloD0MIbJbLRuf8WkCUhpRSlGgVTegDaBZHQIGCYBNmDlJ1fZQoaAZoCWgPQwjURJ+PsuRjQJSGlFKUaBVN6ANoFkdAgYmqUeMho3V9lChoBmgJaA9DCIdu9gfKPTBAlIaUUpRoFU0nAWgWR0CBkmT3Zf2LdX2UKGgGaAloD0MIKxTpfk6BZUCUhpRSlGgVTegDaBZHQIGgQCQtBfN1fZQoaAZoCWgPQwgsEaj+QS9hQJSGlFKUaBVN6ANoFkdAgaZcNQTEi3V9lChoBmgJaA9DCEP/BBerpWBAlIaUUpRoFU3oA2gWR0CBsMpZwGW2dX2UKGgGaAloD0MIWJBmLJpNW0CUhpRSlGgVTegDaBZHQIG2+N96Tnt1fZQoaAZoCWgPQwjRdHYyOPBGQJSGlFKUaBVNZAFoFkdAgbcS2H+IdnV9lChoBmgJaA9DCJIiMqzigGNAlIaUUpRoFU3oA2gWR0CBwRdxAB1cdX2UKGgGaAloD0MIHv6arFHxYECUhpRSlGgVTegDaBZHQIHDl4NZvDR1fZQoaAZoCWgPQwgXSFD8GCNYQJSGlFKUaBVN6ANoFkdAgcwaSTyJ9HV9lChoBmgJaA9DCEcCDTb1YGFAlIaUUpRoFU3oA2gWR0CBzkHeJpFkdX2UKGgGaAloD0MIOJ86VqkdYkCUhpRSlGgVTegDaBZHQIHPa6nR9gF1fZQoaAZoCWgPQwgIrYcvE5pjQJSGlFKUaBVN6ANoFkdAgdWOmzjWCnV9lChoBmgJaA9DCHU6kPXU6um/lIaUUpRoFU1sAWgWR0CB1qC+UQkHdX2UKGgGaAloD0MIUORJ0jVrYkCUhpRSlGgVTegDaBZHQIHZAnWrfch1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.22610-SP0 10.0.22610", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:446749aa0a0a0708fdb336ab490139a8ea18d758bcb11a2744c2cbe22b576c9e
|
3 |
+
size 143866
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,25 +4,25 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,7 +35,7 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
@@ -47,16 +47,16 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
@@ -86,7 +86,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x0000024E0FFDC700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000024E0FFDC790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000024E0FFDC820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000024E0FFDC8B0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x0000024E0FFDC940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x0000024E0FFDC9D0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000024E0FFDCA60>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x0000024E0FFDCAF0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000024E0FFDCB80>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000024E0FFDCC10>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x0000024E0FFDCCA0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x0000024E0FFBB630>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651701539.4540756,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaObj0p4H66Du55u97sEbeD+lU7iRSQOgAAgD8AAIA/AEdnvUk1sz/5kC2/5ckcvizkXDzUU669AAAAAAAAAAAmxMC9eyiEuguT0DsVzQa2428Auy1oBbUAAIA/AACAPxq0kr0U8Kq6RoZ1O+8t2zU4Gqm5JtKMugAAgD8AAIA/M+Q6vi4+gLxBDTa7YtKBO1v22D1GtVC8AACAPwAAgD+a5T48j055ukbSCzyyXTI37V9IOzaaITYAAIA/AACAP9Ztar4wFIk/nKwQv/K8pL4vwe29kIlOvgAAAAAAAAAAutwAvrp/Rj9mjv89FnAjvr7F2Tx2uqQ8AAAAAAAAAAA6g5I+341aP/Uw0r3G+1m+90e/Pe0rzjwAAAAAAAAAAAD8v7xsxaQ/AuDRPfP4kL7I3Qy+ch3LPQAAAAAAAAAA5gxIvtuAibwZ06+6YFTyuDtl/D36CN05AACAPwAAgD8aW7M9FJSjuqPfubpuSK83SHNSupnVxDkAAIA/AACAPwBMWD03Lsc+8BgnPQ4YPr6PCg+86yatPQAAAAAAAAAAU3k7PlQBlryOtJg8sPsVu9fXBr5uPu67AACAPwAAgD8gfQa+O8aBPabBjDzZKCK+F8KGvKZkJD0AAAAAAAAAABPCoj7y4ZM/rZKAvo6GdL4PB+u8yEZzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3J+LhowiUkCUhpRSlIwBbJRN6AOMAXSUR0B9A4HRkVesdX2UKGgGaAloD0MIUWhZ9481XUCUhpRSlGgVTegDaBZHQH0W7lJYkmh1fZQoaAZoCWgPQwjEl4kipMBEwJSGlFKUaBVNZAFoFkdAfRfGVRk3CXV9lChoBmgJaA9DCNcWnpeKeVJAlIaUUpRoFU3oA2gWR0B9L0C5mRNidX2UKGgGaAloD0MIZ2FPO/y8WUCUhpRSlGgVTegDaBZHQH0ygh0Qsf91fZQoaAZoCWgPQwiOzCN/sMViQJSGlFKUaBVN6ANoFkdAfa7c6/7BPHV9lChoBmgJaA9DCL1UbMzrmVpAlIaUUpRoFU3oA2gWR0B9yetcOby6dX2UKGgGaAloD0MIeLZHb7jZV0CUhpRSlGgVTegDaBZHQH3RA1ivxH51fZQoaAZoCWgPQwjAeAYN/UdUQJSGlFKUaBVN6ANoFkdAfdz7Dl5nlHV9lChoBmgJaA9DCO0ozlFHbllAlIaUUpRoFU3oA2gWR0B94j3ztkWidX2UKGgGaAloD0MIIO1/gLV6XECUhpRSlGgVTegDaBZHQH3tf8Muvll1fZQoaAZoCWgPQwga/Wg4ZW71v5SGlFKUaBVNCAFoFkdAfhTw+t8uz3V9lChoBmgJaA9DCCld+pek81lAlIaUUpRoFU3oA2gWR0B+Fh0xM36zdX2UKGgGaAloD0MIlN3M6EeCYECUhpRSlGgVTegDaBZHQH4WXNLUTct1fZQoaAZoCWgPQwiwrZ/+M35mQJSGlFKUaBVNdgNoFkdAfhnXYDklu3V9lChoBmgJaA9DCDI+zF62hV1AlIaUUpRoFU3oA2gWR0B+LRmXgLqmdX2UKGgGaAloD0MISZ9W0R80VkCUhpRSlGgVTegDaBZHQH5B7I91U2l1fZQoaAZoCWgPQwi4IjFBDRZgQJSGlFKUaBVN6ANoFkdAflLiPyTY/XV9lChoBmgJaA9DCJMcsKvJfl5AlIaUUpRoFU3oA2gWR0B+Zk+fRNRFdX2UKGgGaAloD0MIAB5RobrMVECUhpRSlGgVTegDaBZHQH5nNWhh6Sl1fZQoaAZoCWgPQwjWbrvQ3K1gQJSGlFKUaBVN6ANoFkdAfn4PepGWlnV9lChoBmgJaA9DCF0XfnA+r1xAlIaUUpRoFU3oA2gWR0B+gTAnDziCdX2UKGgGaAloD0MIa2CrBIsJVUCUhpRSlGgVTegDaBZHQH8yorjHXEt1fZQoaAZoCWgPQwiXOPJAZDVZQJSGlFKUaBVN6ANoFkdAf0ueyiVSoHV9lChoBmgJaA9DCPjDz38PuWBAlIaUUpRoFU3oA2gWR0B/UnTPSlWPdX2UKGgGaAloD0MIG/M64hD1Y0CUhpRSlGgVTegDaBZHQH9kT1bqyGB1fZQoaAZoCWgPQwgAOzdtxsBdQJSGlFKUaBVN6ANoFkdAf3BUILPUrnV9lChoBmgJaA9DCPUtc7osHENAlIaUUpRoFU1HAWgWR0B/dhdWyTpxdX2UKGgGaAloD0MIbXNjekJRZECUhpRSlGgVTVgDaBZHQH+OyQo1DSh1fZQoaAZoCWgPQwi2vHK97TpjQJSGlFKUaBVN6ANoFkdAf5Q7QLNOd3V9lChoBmgJaA9DCPUUOUTcQFVAlIaUUpRoFU3oA2gWR0B/lUBZIQOGdX2UKGgGaAloD0MIXaRQFr5yYUCUhpRSlGgVTegDaBZHQH+VdLg4wRJ1fZQoaAZoCWgPQwgJGjOJespbQJSGlFKUaBVN6ANoFkdAf5hxHoX9BXV9lChoBmgJaA9DCJSJWwUx0DZAlIaUUpRoFU0yAWgWR0B/sDFglWwNdX2UKGgGaAloD0MI3QvMCkVeMMCUhpRSlGgVTVQBaBZHQH+xGbwz+FV1fZQoaAZoCWgPQwiPF9LhIa1dQJSGlFKUaBVN6ANoFkdAf7tIqLCN0nV9lChoBmgJaA9DCL/09ueiCVZAlIaUUpRoFU3oA2gWR0B/yNeb/ffodX2UKGgGaAloD0MI0xOWeEChQkCUhpRSlGgVTS4BaBZHQH/MjHbRF7V1fZQoaAZoCWgPQwj4bYjxmr81wJSGlFKUaBVNQQFoFkdAf9AAskIHDHV9lChoBmgJaA9DCLPTD+oiHV5AlIaUUpRoFU3oA2gWR0B/2MS9M9KVdX2UKGgGaAloD0MIi1HX2vuSWECUhpRSlGgVTegDaBZHQH/ZhTwUg0V1fZQoaAZoCWgPQwi2ZisvedlgQJSGlFKUaBVN6ANoFkdAf+zPqcEvCnV9lChoBmgJaA9DCG9JDtjVYE1AlIaUUpRoFU3oA2gWR0B/76I55qubdX2UKGgGaAloD0MIrFPle0aSEkCUhpRSlGgVTQIBaBZHQIBAT4cm0E51fZQoaAZoCWgPQwjj32dcOP9eQJSGlFKUaBVN6ANoFkdAgEHZoXbdrXV9lChoBmgJaA9DCKio+pVO2WJAlIaUUpRoFU3oA2gWR0CARUsXBP9DdX2UKGgGaAloD0MIWfrQBfUtOsCUhpRSlGgVTVsBaBZHQIBJ/D+BH091fZQoaAZoCWgPQwjcf2Q69PtiQJSGlFKUaBVN6ANoFkdAgE3hCdBjWnV9lChoBmgJaA9DCM5SspyEbllAlIaUUpRoFU3oA2gWR0CAZHLcKw6idX2UKGgGaAloD0MI46WbxCDvZECUhpRSlGgVTegDaBZHQIBnQ/A0sOJ1fZQoaAZoCWgPQwiIuaRquxRjQJSGlFKUaBVN6ANoFkdAgGms3IdU83V9lChoBmgJaA9DCLTIdr4f0mZAlIaUUpRoFU3oA2gWR0CAd0Hj6vaDdX2UKGgGaAloD0MIgbG+gckzXECUhpRSlGgVTegDaBZHQIB3ztgKF7F1fZQoaAZoCWgPQwioyCHi5pQHwJSGlFKUaBVL5GgWR0CAe/P/rB0qdX2UKGgGaAloD0MI5E1+i871YUCUhpRSlGgVTegDaBZHQIB9o84gieN1fZQoaAZoCWgPQwiRDg9h/HxgQJSGlFKUaBVN6ANoFkdAgITD8Lron3V9lChoBmgJaA9DCN+pgHseh2BAlIaUUpRoFU3oA2gWR0CAhqxfOUt7dX2UKGgGaAloD0MIa+9TVeh3YECUhpRSlGgVTegDaBZHQICIXk5p8F91fZQoaAZoCWgPQwhXJCaoYa5jQJSGlFKUaBVN6ANoFkdAgJbI/7iyZHV9lChoBmgJaA9DCNyhYTFqvGNAlIaUUpRoFU3oA2gWR0CAmDRoh6jWdX2UKGgGaAloD0MIDhZO0vyx9z+UhpRSlGgVTRcBaBZHQICfsvboKUp1fZQoaAZoCWgPQwiaB7DIr785QJSGlFKUaBVNBQFoFkdAgJ/S1Vo6CHV9lChoBmgJaA9DCIl+bf109mdAlIaUUpRoFU2ZAWgWR0CA3jo/zJ6qdX2UKGgGaAloD0MIpu1fWWnLXkCUhpRSlGgVTegDaBZHQIDgMNvwVj91fZQoaAZoCWgPQwgqqn6l89JiQJSGlFKUaBVN6ANoFkdAgOFrMcIZ63V9lChoBmgJaA9DCD2YFB+fEWFAlIaUUpRoFU3oA2gWR0CA5HJ5E+gUdX2UKGgGaAloD0MIsg3cgTpbZECUhpRSlGgVTegDaBZHQIDpRHI6r/91fZQoaAZoCWgPQwhJDtjVZHRhQJSGlFKUaBVN6ANoFkdAgO0zBAOav3V9lChoBmgJaA9DCFcKgVziMFtAlIaUUpRoFU3oA2gWR0CBBMJTl1bJdX2UKGgGaAloD0MIhbUxdkLfYECUhpRSlGgVTegDaBZHQIEHU7r9l3B1fZQoaAZoCWgPQwj/rs+c9akiwJSGlFKUaBVNTgFoFkdAgQsIwudwvXV9lChoBmgJaA9DCE+uKZDZF2FAlIaUUpRoFU3oA2gWR0CBFdjuKGcndX2UKGgGaAloD0MIiNaKNsf6X0CUhpRSlGgVTegDaBZHQIEWZX6qKgt1fZQoaAZoCWgPQwifILHdvbNjQJSGlFKUaBVN6ANoFkdAgRv6vq1PWXV9lChoBmgJaA9DCIgP7Pgva11AlIaUUpRoFU3oA2gWR0CBJtapxWDIdX2UKGgGaAloD0MIcRsN4C2ALkCUhpRSlGgVTUsBaBZHQIEpnBFd9lV1fZQoaAZoCWgPQwiKr3YU52gnQJSGlFKUaBVNJQFoFkdAgTPSRr8BMnV9lChoBmgJaA9DCAqjWdm+tmJAlIaUUpRoFU3oA2gWR0CBNmT0QK8ddX2UKGgGaAloD0MIcCamC7EVWkCUhpRSlGgVTegDaBZHQIE30CNjsld1fZQoaAZoCWgPQwiYio15nXBhQJSGlFKUaBVN6ANoFkdAgT7isGPgenV9lChoBmgJaA9DCKK2DaMg41tAlIaUUpRoFU3oA2gWR0CBPwJqqOtGdX2UKGgGaAloD0MIfCdmvZhlYECUhpRSlGgVTegDaBZHQIF9G8ujASF1fZQoaAZoCWgPQwhS19r71EliQJSGlFKUaBVN6ANoFkdAgX6+F10T13V9lChoBmgJaA9DCHkCYadYUmFAlIaUUpRoFU3oA2gWR0CBf8gi/wiJdX2UKGgGaAloD0MIbJbLRuf8WkCUhpRSlGgVTegDaBZHQIGCYBNmDlJ1fZQoaAZoCWgPQwjURJ+PsuRjQJSGlFKUaBVN6ANoFkdAgYmqUeMho3V9lChoBmgJaA9DCIdu9gfKPTBAlIaUUpRoFU0nAWgWR0CBkmT3Zf2LdX2UKGgGaAloD0MIKxTpfk6BZUCUhpRSlGgVTegDaBZHQIGgQCQtBfN1fZQoaAZoCWgPQwgsEaj+QS9hQJSGlFKUaBVN6ANoFkdAgaZcNQTEi3V9lChoBmgJaA9DCEP/BBerpWBAlIaUUpRoFU3oA2gWR0CBsMpZwGW2dX2UKGgGaAloD0MIWJBmLJpNW0CUhpRSlGgVTegDaBZHQIG2+N96Tnt1fZQoaAZoCWgPQwjRdHYyOPBGQJSGlFKUaBVNZAFoFkdAgbcS2H+IdnV9lChoBmgJaA9DCJIiMqzigGNAlIaUUpRoFU3oA2gWR0CBwRdxAB1cdX2UKGgGaAloD0MIHv6arFHxYECUhpRSlGgVTegDaBZHQIHDl4NZvDR1fZQoaAZoCWgPQwgXSFD8GCNYQJSGlFKUaBVN6ANoFkdAgcwaSTyJ9HV9lChoBmgJaA9DCEcCDTb1YGFAlIaUUpRoFU3oA2gWR0CBzkHeJpFkdX2UKGgGaAloD0MIOJ86VqkdYkCUhpRSlGgVTegDaBZHQIHPa6nR9gF1fZQoaAZoCWgPQwgIrYcvE5pjQJSGlFKUaBVN6ANoFkdAgdWOmzjWCnV9lChoBmgJaA9DCHU6kPXU6um/lIaUUpRoFU1sAWgWR0CB1qC+UQkHdX2UKGgGaAloD0MIUORJ0jVrYkCUhpRSlGgVTegDaBZHQIHZAnWrfch1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVcgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEJkOlxkZXZccmxcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9547c18b750a882f1ae063b6d6c203d2186b2438c5281d1816920b8233c2e03
|
3 |
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0146eae2511687b57409c65b67d3e50f3c9008eeb1e114611a6406b0e46ca39
|
3 |
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS:
|
2 |
-
Python: 3.
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Windows-10-10.0.22610-SP0 10.0.22610
|
2 |
+
Python: 3.8.10
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8de67b996abf32aecc9f495eec3846803bf91f6f33c5dfeb03d6cc72236d567
|
3 |
+
size 262528
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 166.01544872188293, "std_reward": 30.89014552126036, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T23:23:26.824571"}
|