File size: 4,841 Bytes
c475ecf 7931357 c475ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: TinyLlama-1.1B-SlimOrca-Function-Calling-3T
results: []
datasets:
- Open-Orca/SlimOrca-Dedup
- gardner/glaive-function-calling-v2-sharegpt
language: en
---

# TinyLlama-1.1B-SlimOrca-Function-Calling-3T
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup) and [glaive-function-calling-v2](https://huggingface.co/datasets/gardner/glaive-function-calling-v2-sharegpt) datasets.
# Evaluation
It achieves the following results on the evaluation set:
- Loss: 0.7403
Please see the `scripts/llm-eval.py` to recreate the evaluation results from the test split as published here: [gardner/tinyllama-function-calling-eval](https://huggingface.co/datasets/gardner/tinyllama-function-calling-eval). The model responds with function calling when expected and refuses when it doesn't have access to tools. In the linked dataset, `result1` is generated by this model and `result2` is from the test dataset.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: Open-Orca/SlimOrca-Dedup
type: sharegpt
conversation: chatml
- path: gardner/glaive-function-calling-v2-sharegpt
type: sharegpt
conversation: chatml
dataset_prepared_path: ./.prepared-datasets/glaive-function-calling-v2-sharegpt
val_set_size: 0.05
output_dir: ./tinyllama/function-calling/chatml
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2492 | 0.0 | 1 | 1.2363 |
| 0.7621 | 0.25 | 1896 | 0.8096 |
| 0.757 | 0.5 | 3792 | 0.7852 |
| 0.6424 | 0.75 | 5688 | 0.7717 |
| 0.5944 | 1.04 | 7584 | 0.7625 |
| 0.73 | 1.29 | 9480 | 0.7585 |
| 0.6781 | 1.54 | 11376 | 0.7521 |
| 0.829 | 1.79 | 13272 | 0.7471 |
| 0.6964 | 2.08 | 15168 | 0.7467 |
| 0.6652 | 2.33 | 17064 | 0.7453 |
| 0.7645 | 2.58 | 18960 | 0.7420 |
| 0.5702 | 2.83 | 20856 | 0.7392 |
| 0.7049 | 3.12 | 22752 | 0.7418 |
| 0.6087 | 3.37 | 24648 | 0.7412 |
| 0.6064 | 3.62 | 26544 | 0.7405 |
| 0.7125 | 3.87 | 28440 | 0.7403 |
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0 |