--- license: apache-2.0 datasets: - gair-prox/c4-pro language: - en tags: - llama --- # C4-ProX-1.7B

[ArXiv](http://arxiv.org/abs/2409.17115) | [Models](https://huggingface.co/gair-prox/C4-ProX-1.7B) | [Data](https://huggingface.co/datasets/gair-prox/c4-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **C4-ProX-1.7B** is a small language model. It was and trained on the [C4-pro](https://huggingface.co/datasets/gair-prox/c4-pro) for 50B tokens. ## Evaluations ProX models are evaluated over 10 language model benchmarks in zero-shot setting. | | ArC-c | ARC-e | CSQA | HellaS | MMLU | OBQA | PiQA | SIQA | WinoG | SciQ | AVG | |-----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|------| | raw | 25.3 | 48.8 | 30.1 | 52.4 | 28.8 | 32.2 | 72.0 | 40.6 | 53.6 | 71.7 | 45.5 | | ours | 31.1 | 56.0 | 28.4 | 55.2 | 31.1 | 36.2 | 74.0 | 41.0 | 54.1 | 76.8 | 48.4 | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```