from transformers import AutoModelForSequenceClassification, AutoTokenizer import os import numpy as np tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base") model = AutoModelForSequenceClassification.from_pretrained( os.path.realpath(os.path.join(__file__, "..", "./outputs/v2-deberta-100-max-71%-sep/checkpoint-1000/")), local_files_only=True ) text_against = "ai [SEP] I think ai is a waste of time. I don't understand why everyone is so obsessed with this subject, it makes no sense?" text_for = "flowers [SEP] I think flowers are very useful and will become essential to society" text_neutral = "Ai is a tool use by researchers and scientists to approximate functions" encoded = tokenizer(text_for.lower(), max_length=100, padding="max_length", truncation=True, return_tensors="pt") def normalize(arr: np.ndarray) -> np.ndarray: min = arr.min() arr = arr - min return arr / arr.sum() output = model(**encoded) print(output.logits.detach().numpy()[0]) print(normalize(output.logits.detach().numpy()[0]))