Update README.md
Browse files
README.md
CHANGED
|
@@ -34,7 +34,7 @@ pipeline_tag: object-detection
|
|
| 34 |
<img width="500" alt="foduucom/stockmarket-pattern-detection-yolov8" src="https://huggingface.co/foduucom/stockmarket-pattern-detection-yolov8/resolve/main/thumbnail.jpg">
|
| 35 |
</div>
|
| 36 |
|
| 37 |
-
# Model Card for YOLOv8s Stock Market Pattern Detection from Live Screen Capture
|
| 38 |
|
| 39 |
## Model Summary
|
| 40 |
|
|
@@ -84,15 +84,15 @@ Users should be aware of the model's limitations and potential biases. Testing a
|
|
| 84 |
|
| 85 |
## How to Get Started with the Model
|
| 86 |
|
| 87 |
-
To begin using the YOLOv8s Stock Market Pattern Detection model, install the necessary libraries:
|
| 88 |
```bash
|
| 89 |
-
pip install opencv-python==4.11.0.86 numpy==2.1.3
|
| 90 |
```
|
| 91 |
|
| 92 |
### Screen Capture and Pattern Detection Implementation
|
| 93 |
```python
|
| 94 |
import os
|
| 95 |
-
import mss
|
| 96 |
import cv2
|
| 97 |
import numpy as np
|
| 98 |
import time
|
|
@@ -100,11 +100,15 @@ import glob
|
|
| 100 |
from ultralytics import YOLO
|
| 101 |
from openpyxl import Workbook
|
| 102 |
|
| 103 |
-
#
|
| 104 |
home_dir = os.path.expanduser("~")
|
|
|
|
|
|
|
| 105 |
save_path = os.path.join(home_dir, "yolo_detection")
|
| 106 |
screenshots_path = os.path.join(save_path, "screenshots")
|
| 107 |
detect_path = os.path.join(save_path, "runs", "detect")
|
|
|
|
|
|
|
| 108 |
os.makedirs(screenshots_path, exist_ok=True)
|
| 109 |
os.makedirs(detect_path, exist_ok=True)
|
| 110 |
|
|
@@ -112,49 +116,96 @@ os.makedirs(detect_path, exist_ok=True)
|
|
| 112 |
classes = ['Head and shoulders bottom', 'Head and shoulders top', 'M_Head', 'StockLine', 'Triangle', 'W_Bottom']
|
| 113 |
|
| 114 |
# Load YOLOv8 model
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
# Define screen capture region
|
| 118 |
monitor = {"top": 0, "left": 683, "width": 683, "height": 768}
|
| 119 |
|
| 120 |
-
# Create Excel file
|
| 121 |
excel_file = os.path.join(save_path, "classification_results.xlsx")
|
| 122 |
wb = Workbook()
|
| 123 |
ws = wb.active
|
| 124 |
-
ws.append(["Timestamp", "Predicted Image Path", "Label"])
|
| 125 |
|
| 126 |
# Initialize video writer
|
| 127 |
video_path = os.path.join(save_path, "annotated_video.mp4")
|
| 128 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 129 |
-
fps = 0.5
|
| 130 |
video_writer = None
|
| 131 |
|
| 132 |
# Start capturing
|
| 133 |
with mss.mss() as sct:
|
| 134 |
start_time = time.time()
|
| 135 |
frame_count = 0
|
| 136 |
-
|
| 137 |
while time.time() - start_time < 60:
|
|
|
|
| 138 |
sct_img = sct.grab(monitor)
|
| 139 |
img = np.array(sct_img)
|
| 140 |
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
|
|
|
|
|
|
| 141 |
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
|
| 142 |
image_name = f"predicted_images_{timestamp}_{frame_count}.png"
|
| 143 |
image_path = os.path.join(screenshots_path, image_name)
|
| 144 |
cv2.imwrite(image_path, img)
|
| 145 |
-
|
|
|
|
| 146 |
results = model(image_path, save=True)
|
| 147 |
predict_path = results[0].save_dir if results else None
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
ws.append([timestamp, final_image_path, predicted_label])
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
frame_count += 1
|
| 156 |
time.sleep(5)
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
print(f"Results saved to {excel_file}")
|
| 159 |
```
|
| 160 |
|
|
@@ -164,7 +215,7 @@ For inquiries and contributions, please contact us at [email protected].
|
|
| 164 |
```bibtex
|
| 165 |
@ModelCard{
|
| 166 |
author = {Nehul Agrawal,
|
| 167 |
-
Pranjal Singh Thakur, Arjun Singh},
|
| 168 |
title = {YOLOv8s Stock Market Pattern Detection from Live Screen Capture},
|
| 169 |
year = {2023}
|
| 170 |
}
|
|
|
|
| 34 |
<img width="500" alt="foduucom/stockmarket-pattern-detection-yolov8" src="https://huggingface.co/foduucom/stockmarket-pattern-detection-yolov8/resolve/main/thumbnail.jpg">
|
| 35 |
</div>
|
| 36 |
|
| 37 |
+
# Model Card for YOLOv8s Stock Market Real Time Pattern Detection from Live Screen Capture
|
| 38 |
|
| 39 |
## Model Summary
|
| 40 |
|
|
|
|
| 84 |
|
| 85 |
## How to Get Started with the Model
|
| 86 |
|
| 87 |
+
To begin using the YOLOv8s Stock Market Real Time Pattern Detection model, install the necessary libraries:
|
| 88 |
```bash
|
| 89 |
+
pip install mss==10.0.0 opencv-python==4.11.0.86 numpy==2.1.3 ultralytics==8.3.94 openpyxl==3.1.5
|
| 90 |
```
|
| 91 |
|
| 92 |
### Screen Capture and Pattern Detection Implementation
|
| 93 |
```python
|
| 94 |
import os
|
| 95 |
+
import mss # type: ignore
|
| 96 |
import cv2
|
| 97 |
import numpy as np
|
| 98 |
import time
|
|
|
|
| 100 |
from ultralytics import YOLO
|
| 101 |
from openpyxl import Workbook
|
| 102 |
|
| 103 |
+
# Get the user's home directory
|
| 104 |
home_dir = os.path.expanduser("~")
|
| 105 |
+
|
| 106 |
+
# Define dynamic paths
|
| 107 |
save_path = os.path.join(home_dir, "yolo_detection")
|
| 108 |
screenshots_path = os.path.join(save_path, "screenshots")
|
| 109 |
detect_path = os.path.join(save_path, "runs", "detect")
|
| 110 |
+
|
| 111 |
+
# Ensure necessary directories exist
|
| 112 |
os.makedirs(screenshots_path, exist_ok=True)
|
| 113 |
os.makedirs(detect_path, exist_ok=True)
|
| 114 |
|
|
|
|
| 116 |
classes = ['Head and shoulders bottom', 'Head and shoulders top', 'M_Head', 'StockLine', 'Triangle', 'W_Bottom']
|
| 117 |
|
| 118 |
# Load YOLOv8 model
|
| 119 |
+
model_path = "foduucom/stockmarket-pattern-detection-yolov8"
|
| 120 |
+
if not os.path.exists(model_path):
|
| 121 |
+
raise FileNotFoundError(f"Model file not found: {model_path}")
|
| 122 |
+
model = YOLO(model_path)
|
| 123 |
|
| 124 |
# Define screen capture region
|
| 125 |
monitor = {"top": 0, "left": 683, "width": 683, "height": 768}
|
| 126 |
|
| 127 |
+
# Create an Excel file
|
| 128 |
excel_file = os.path.join(save_path, "classification_results.xlsx")
|
| 129 |
wb = Workbook()
|
| 130 |
ws = wb.active
|
| 131 |
+
ws.append(["Timestamp", "Predicted Image Path", "Label"]) # Headers
|
| 132 |
|
| 133 |
# Initialize video writer
|
| 134 |
video_path = os.path.join(save_path, "annotated_video.mp4")
|
| 135 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 136 |
+
fps = 0.5 # Adjust frames per second as needed
|
| 137 |
video_writer = None
|
| 138 |
|
| 139 |
# Start capturing
|
| 140 |
with mss.mss() as sct:
|
| 141 |
start_time = time.time()
|
| 142 |
frame_count = 0
|
| 143 |
+
|
| 144 |
while time.time() - start_time < 60:
|
| 145 |
+
# Capture the screen region
|
| 146 |
sct_img = sct.grab(monitor)
|
| 147 |
img = np.array(sct_img)
|
| 148 |
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
| 149 |
+
|
| 150 |
+
# Save the frame in the screenshots folder
|
| 151 |
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
|
| 152 |
image_name = f"predicted_images_{timestamp}_{frame_count}.png"
|
| 153 |
image_path = os.path.join(screenshots_path, image_name)
|
| 154 |
cv2.imwrite(image_path, img)
|
| 155 |
+
|
| 156 |
+
# Run YOLO model and get save directory
|
| 157 |
results = model(image_path, save=True)
|
| 158 |
predict_path = results[0].save_dir if results else None
|
| 159 |
+
|
| 160 |
+
# Find the latest annotated image inside predict_path
|
| 161 |
+
if predict_path and os.path.exists(predict_path):
|
| 162 |
+
annotated_images = sorted(glob.glob(os.path.join(predict_path, "*.jpg")), key=os.path.getmtime, reverse=True)
|
| 163 |
+
final_image_path = annotated_images[0] if annotated_images else image_path
|
| 164 |
+
else:
|
| 165 |
+
final_image_path = image_path # Fallback to original image
|
| 166 |
+
|
| 167 |
+
# Determine predicted label
|
| 168 |
+
if results and results[0].boxes:
|
| 169 |
+
class_indices = results[0].boxes.cls.tolist()
|
| 170 |
+
predicted_label = classes[int(class_indices[0])]
|
| 171 |
+
else:
|
| 172 |
+
predicted_label = "No pattern detected"
|
| 173 |
+
|
| 174 |
+
# Insert data into Excel (store path instead of image)
|
| 175 |
ws.append([timestamp, final_image_path, predicted_label])
|
| 176 |
+
|
| 177 |
+
# Read the image for video processing
|
| 178 |
+
annotated_img = cv2.imread(final_image_path)
|
| 179 |
+
if annotated_img is not None:
|
| 180 |
+
# Add timestamp and label text to the image
|
| 181 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 182 |
+
cv2.putText(annotated_img, f"{timestamp}", (10, 30), font, 0.7, (0, 255, 0), 2, cv2.LINE_AA)
|
| 183 |
+
cv2.putText(annotated_img, f"{predicted_label}", (10, 60), font, 0.7, (0, 255, 255), 2, cv2.LINE_AA)
|
| 184 |
+
|
| 185 |
+
# Initialize video writer if not already initialized
|
| 186 |
+
if video_writer is None:
|
| 187 |
+
height, width, layers = annotated_img.shape
|
| 188 |
+
video_writer = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
|
| 189 |
+
|
| 190 |
+
video_writer.write(annotated_img)
|
| 191 |
+
|
| 192 |
+
print(f"Frame {frame_count}: {final_image_path} -> {predicted_label}")
|
| 193 |
frame_count += 1
|
| 194 |
time.sleep(5)
|
| 195 |
+
|
| 196 |
+
# Save the Excel file
|
| 197 |
+
wb.save(excel_file)
|
| 198 |
+
|
| 199 |
+
# Release video writer
|
| 200 |
+
if video_writer is not None:
|
| 201 |
+
video_writer.release()
|
| 202 |
+
print(f"Video saved at {video_path}")
|
| 203 |
+
|
| 204 |
+
# Remove all files in screenshots directory
|
| 205 |
+
for file in os.scandir(screenshots_path):
|
| 206 |
+
os.remove(file.path)
|
| 207 |
+
os.rmdir(screenshots_path)
|
| 208 |
+
|
| 209 |
print(f"Results saved to {excel_file}")
|
| 210 |
```
|
| 211 |
|
|
|
|
| 215 |
```bibtex
|
| 216 |
@ModelCard{
|
| 217 |
author = {Nehul Agrawal,
|
| 218 |
+
Pranjal Singh Thakur, and Arjun Singh},
|
| 219 |
title = {YOLOv8s Stock Market Pattern Detection from Live Screen Capture},
|
| 220 |
year = {2023}
|
| 221 |
}
|