File size: 39,024 Bytes
c29df8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 |
# coding=utf-8
# Copyright 2025 OpenMOSS and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MOSS-TTSD.
"""
from __future__ import annotations
import math
import os
import re
from dataclasses import asdict, dataclass
from typing import Any, Callable, Optional, Union
import numpy as np
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import BatchEncoding
from transformers.utils import is_torch_available, is_torchaudio_available
from transformers import AutoFeatureExtractor, AutoTokenizer, AutoModel
#from transformers.models.xy_tokenizer.modeling_xy_tokenizer import XYTokenizer
if is_torch_available():
import torch
if is_torchaudio_available():
import torchaudio
class MossTTSDProcessorKwargs(ProcessingKwargs, total=False):
"""
Arguments for configuring MOSS-TTSD processing operations.
Inherits from ProcessingKwargs and provides structured configuration for text and audio processing.
"""
_defaults = {
"text_kwargs": {
"pad_token_id": 0, # Fallback pad token ID, actual value comes from tokenizer.pad_token_id
},
"audio_kwargs": {
"max_channels": 8, # Maximum number of quantization channels
"audio_pad_token_id": 1024, # Padding token ID for non-text channels
"silence_duration": 0.0, # Duration of silence to append for encoder segmentation
"input_sample_rate": 16000, # Input audio sampling rate (fallback, inferred from audio_tokenizer.config)
"encoder_downsample_rate": 320, # Encoder downsampling rate (fallback, inferred from audio_tokenizer.config)
"speech_token_range": [151665, 152689], # Token range for speech tokens (first codebook offset mapping)
"audio_bos_token": "<|begin_of_speech|>",
"audio_eos_token": "<|end_of_speech|>",
},
"common_kwargs": {
"return_tensors": "pt",
"padding": True,
"use_normalize": False,
},
}
@dataclass
class MossTTSDChatSample:
"""
Intermediate representation of a single sample with T×C grid layout and metadata.
Args:
input_ids_2d (`torch.LongTensor`):
Shape (T, C) tensor where column 0 contains text tokens and columns 1..C-1 contain
quantized audio codebooks (or padding token 1024 for empty slots).
label_ids_2d (`torch.LongTensor`, *optional*):
Optional label tensor for training, same shape as input_ids_2d.
meta (`dict`):
Dictionary containing metadata for debugging and tracking purposes.
"""
input_ids_2d: "torch.LongTensor"
label_ids_2d: Optional["torch.LongTensor"]
meta: dict
@dataclass
class MossTTSDBatchInput:
"""
Batched input tensors for MOSS-TTSD model.
Args:
input_ids (`torch.LongTensor`):
Shape (B, T, C) tensor containing batched input token IDs.
attention_mask (`torch.LongTensor`):
Shape (B, T) tensor containing attention mask for valid tokens.
labels (`torch.LongTensor`, *optional*):
Optional shape (B, T, C) tensor containing label token IDs for training.
"""
input_ids: "torch.LongTensor"
attention_mask: "torch.LongTensor"
labels: Optional["torch.LongTensor"]
@dataclass
class MossTTSDResponse:
"""
Unified response container for MOSS-TTSD inference outputs.
Args:
audio (`np.ndarray`, *optional*):
Optional numpy array containing generated audio waveform.
generated_text (`str`, *optional*, defaults to `""`):
String containing generated text output.
sampling_rate (`int`, *optional*):
Optional integer specifying the sampling rate of the generated audio.
"""
audio: Optional[np.ndarray] = None
generated_text: str = ""
sampling_rate: Optional[int] = None
class MossTTSDSampleProcessor:
"""
Sample-level processor for MOSS-TTSD that handles individual sample processing without batch padding.
This class handles per-sample processing logic:
- Parses JSONL items (text/prompt_text/prompt_audio)
- Optional text normalization
- Audio loading/resampling/merging, feature extraction and encoding
- Generates T×C grid and performs multi-channel shifting
Args:
tokenizer (`AutoTokenizer`):
The text tokenizer for encoding text tokens.
feature_extractor (`AutoFeatureExtractor`, *optional*):
Optional feature extractor for audio preprocessing.
audio_tokenizer (`AutoModel`, *optional*):
Optional audio tokenizer for audio encoding/decoding.
chat_template (`str`, *optional*):
Optional chat template string for conversation formatting.
speech_token_range (`List[int]`):
List of [start, end] token IDs for speech token mapping.
audio_bos_token (`str`):
Beginning of speech token string.
audio_eos_token (`str`):
End of speech token string.
audio_pad_token_id (`int`):
Padding token ID for audio channels.
max_channels (`int`):
Maximum number of quantization channels.
input_sample_rate (`int`):
Target sample rate for input audio.
encoder_downsample_rate (`int`):
Downsampling rate of the audio encoder.
"""
def __init__(
self,
tokenizer,
feature_extractor: Optional = None,
audio_tokenizer: Optional = None,
*,
chat_template: Optional[str],
speech_token_range: list[int],
audio_bos_token: str,
audio_eos_token: str,
audio_pad_token_id: int,
max_channels: int,
input_sample_rate: int,
encoder_downsample_rate: int,
) -> None:
self.tokenizer = tokenizer
self.feature_extractor = feature_extractor
self.audio_tokenizer = audio_tokenizer
self.chat_template = chat_template
self.speech_token_range = speech_token_range
self.audio_bos_token = audio_bos_token
self.audio_eos_token = audio_eos_token
self.audio_pad_token_id = audio_pad_token_id
self.max_channels = max_channels
self.input_sample_rate = input_sample_rate
self.encoder_downsample_rate = encoder_downsample_rate
def prepare_sample(
self,
item: dict[str, Any],
*,
apply_chat_template: Callable[[str, dict], str],
use_normalize: bool = False,
silence_duration: float = 0.0,
**kwargs,
) -> MossTTSDChatSample:
"""
Prepare a single sample from JSONL item into MossTTSDChatSample format.
Args:
item (`dict`):
Dictionary containing the input data (text, prompt_audio, etc.).
apply_chat_template (`callable`):
Function to apply chat template formatting.
use_normalize (`bool`, *optional*, defaults to `False`):
Whether to apply text normalization.
silence_duration (`float`, *optional*, defaults to `0.0`):
Duration of silence to append to audio for encoder segmentation.
**kwargs:
Additional keyword arguments passed to chat template.
Returns:
`MossTTSDChatSample`: Processed sample with 2D input tensor and metadata.
"""
processed = self._process_jsonl_item(item)
system_prompt = item.get("system_prompt")
if isinstance(system_prompt, str):
kwargs["system_prompt"] = system_prompt
full_text = (processed["prompt_text"] or "") + processed["text"]
original_full_text = full_text
if use_normalize:
full_text = self._normalize_text(full_text)
final_text = full_text.replace("[S1]", "<speaker1>").replace("[S2]", "<speaker2>")
# Load and resample audio (may be None)
wav = self._process_audio_data(processed["prompt_audio"], target_sample_rate=self.input_sample_rate)
# Assemble into grid (T, C)
inputs_2d = self._build_inputs(
text=final_text,
audio_data=wav,
apply_chat_template=apply_chat_template,
silence_duration=silence_duration,
**kwargs,
)
inputs_2d = self._shift_inputs(inputs_2d, pad_token_id=self.tokenizer.pad_token_id, max_channels=self.max_channels)
meta = {
"original_text": original_full_text,
"normalized_text": self._normalize_text(original_full_text) if use_normalize else None,
"final_text": final_text,
"use_normalize": use_normalize,
}
ids_t = torch.tensor(inputs_2d, dtype=torch.long)
return MossTTSDChatSample(input_ids_2d=ids_t, label_ids_2d=None, meta=meta)
def collate(
self,
samples: list[MossTTSDChatSample],
*,
pad_token_id: int,
audio_pad_token_id: int,
) -> MossTTSDBatchInput:
"""
Collate multiple samples into a batch with proper padding.
Args:
samples (`List[MossTTSDChatSample]`):
List of MossTTSDChatSample objects to collate.
pad_token_id (`int`):
Padding token ID for text tokens.
audio_pad_token_id (`int`):
Padding token ID for audio tokens.
Returns:
`MossTTSDBatchInput`: Batched input with padded tensors.
"""
assert is_torch_available(), "PyTorch is required for collation."
ids_list = [s.input_ids_2d for s in samples]
labels_list = [s.label_ids_2d for s in samples]
C = ids_list[0].shape[1]
max_len = max(x.shape[0] for x in ids_list)
padded_ids, padded_labels, padded_attn = [], [], []
for ids, labels in zip(ids_list, labels_list):
pad_len = max_len - ids.shape[0]
pad_grid = torch.full((pad_len, C), audio_pad_token_id, dtype=torch.long)
pad_grid[:, 0] = pad_token_id # Text column uses tokenizer pad
ids_padded = torch.cat([pad_grid, ids], dim=0)
padded_ids.append(ids_padded)
attn = torch.ones(ids.shape[0], dtype=torch.long)
a_pad = torch.zeros(pad_len, dtype=torch.long)
padded_attn.append(torch.cat([a_pad, attn], dim=0))
if labels is None:
padded_labels.append(None)
else:
lab_pad = torch.full((pad_len, C), audio_pad_token_id, dtype=torch.long)
lab_pad[:, 0] = -100 # Text labels are ignored by default
padded_labels.append(torch.cat([lab_pad, labels], dim=0))
input_ids = torch.stack(padded_ids) # (B, T, C)
attention_mask = torch.stack(padded_attn) # (B, T)
labels = torch.stack([l if l is not None else torch.full_like(input_ids[0], -100) for l in padded_labels]) \
if any(l is not None for l in padded_labels) else None
return MossTTSDBatchInput(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
@staticmethod
def _process_jsonl_item(item: dict[str, Any]) -> dict[str, Any]:
"""
Process a JSONL item to extract text and audio data.
Supports both single-speaker and multi-speaker formats:
- Single: {"prompt_audio": path, "prompt_text": text}
- Multi: {"prompt_audio_speaker1": path1, "prompt_text_speaker1": text1, ...}
Args:
item: Dictionary containing the JSONL item data.
Returns:
Dictionary with extracted "text", "prompt_text", and "prompt_audio" fields.
"""
base_path = item.get("base_path", "")
text = item.get("text", "")
prompt_audio = None
prompt_text = ""
if "prompt_audio" in item and "prompt_text" in item:
pa = item["prompt_audio"]
if pa:
prompt_audio = os.path.join(base_path, pa) if isinstance(pa, str) and base_path else pa
prompt_text = item.get("prompt_text", "")
else:
pa1, pt1 = item.get("prompt_audio_speaker1", ""), item.get("prompt_text_speaker1", "")
pa2, pt2 = item.get("prompt_audio_speaker2", ""), item.get("prompt_text_speaker2", "")
has1 = (isinstance(pa1, str) and pa1) or isinstance(pa1, tuple)
has2 = (isinstance(pa2, str) and pa2) or isinstance(pa2, tuple)
if has1 or has2:
spk1 = os.path.join(base_path, pa1) if isinstance(pa1, str) and base_path and pa1 else pa1
spk2 = os.path.join(base_path, pa2) if isinstance(pa2, str) and base_path and pa2 else pa2
prompt_audio = {"speaker1": spk1, "speaker2": spk2}
tmp = ""
if pt1:
tmp += f"[S1]{pt1}"
if pt2:
tmp += f"[S2]{pt2}"
prompt_text = tmp.strip()
return {"text": text, "prompt_text": prompt_text, "prompt_audio": prompt_audio}
@staticmethod
def _normalize_text(text: str) -> str:
"""
Normalize text by applying various transformations for TTS processing.
Performs speaker tag conversion, punctuation normalization, laughter conversion,
and other text cleaning operations suitable for speech synthesis.
Args:
text: Input text string to normalize.
Returns:
Normalized text string.
"""
text = re.sub(r"\[(\d+)\]", r"[S\1]", text)
remove_chars = '【】《》()『』「」"-""~~'
text = re.sub(r"\[(?!S\d+\])([^\]]*)\]", r"\1", text)
segments = re.split(r"(?=\[S\d+\])", text.replace("\n", " "))
out = []
for seg in segments:
seg = seg.strip()
if not seg:
continue
m = re.match(r"^(\[S\d+\])\s*(.*)", seg)
tag, content = m.groups() if m else ("", seg)
content = re.sub(f"[{re.escape(remove_chars)}]", "", content)
content = re.sub(r"哈{2,}", "(笑)", content)
content = re.sub(r"\b(ha(\s*ha)+)\b", "(laughs)", content, flags=re.IGNORECASE)
content = content.replace("——", ",").replace("……", ",")
trans = str.maketrans({"!": ",", "!": ",", ";": ",", ";": ",", ":": ",", ":": ",", "、": ",", "?": ",", "?": ","})
content = content.translate(trans).strip()
if len(content) > 1:
last = "。" if content[-1] == "," else ("." if content[-1] == "," else content[-1])
body = content[:-1].replace("。", ",")
content = body + last
out.append(f"{tag}{content}".strip())
return "".join(out)
@staticmethod
def _load_single_audio(audio_input: Union[str, tuple["torch.Tensor", int]]):
"""
Load audio from file path or tensor tuple.
Args:
audio_input: Either a file path string or a tuple of (tensor, sample_rate).
Returns:
Tuple of (audio_tensor, sample_rate).
Raises:
ValueError: If audio input format is unsupported.
"""
if isinstance(audio_input, tuple) and len(audio_input) == 2:
return audio_input
if isinstance(audio_input, str):
try:
return torchaudio.load(audio_input)
except Exception:
import soundfile as sf # type: ignore
data, sr = sf.read(audio_input, always_2d=True)
data_t = torch.from_numpy(np.transpose(data)) # (C, T)
return data_t, int(sr)
raise ValueError(f"Unsupported audio input format: {type(audio_input)}")
@staticmethod
def _resample(audio: "torch.Tensor", sr: int, target_sr: int) -> tuple["torch.Tensor", int]:
"""
Resample audio to target sample rate and convert to mono if needed.
Args:
audio: Input audio tensor with shape (channels, time).
sr: Current sample rate.
target_sr: Target sample rate.
Returns:
Tuple of (resampled_audio, target_sr) where audio is mono with shape (1, time).
"""
if sr != target_sr:
audio = torchaudio.functional.resample(audio, sr, target_sr)
if audio.shape[0] > 1:
audio = audio.mean(dim=0, keepdim=True)
if audio.ndim == 1:
audio = audio.unsqueeze(0)
return audio, target_sr
@classmethod
def _load_audio_data(
cls, audio_input: Union[str, tuple["torch.Tensor", int]], target_sample_rate: int
) -> tuple["torch.Tensor", int]:
"""
Load and resample audio data to target sample rate.
Args:
audio_input: Audio file path or tensor tuple.
target_sample_rate: Target sample rate for resampling.
Returns:
Tuple of (audio_tensor, target_sample_rate).
"""
audio, sr = cls._load_single_audio(audio_input)
return cls._resample(audio, sr, target_sample_rate)
@classmethod
def _merge_speaker_audios(
cls,
wav1: Union[str, tuple["torch.Tensor", int]],
wav2: Union[str, tuple["torch.Tensor", int]],
target_sample_rate: int,
) -> "torch.Tensor":
"""
Merge two speaker audio inputs by concatenation.
Args:
wav1: Audio input for speaker 1.
wav2: Audio input for speaker 2.
target_sample_rate: Target sample rate for both audio inputs.
Returns:
Concatenated audio tensor.
"""
a1, _ = cls._load_audio_data(wav1, target_sample_rate)
a2, _ = cls._load_audio_data(wav2, target_sample_rate)
return torch.cat([a1, a2], dim=1)
@classmethod
def _process_audio_data(
cls, prompt_audio: Optional[Union[str, dict[str, Any], tuple["torch.Tensor", int]]], target_sample_rate: int
) -> Optional["torch.Tensor"]:
"""
Process audio data from various input formats.
Handles single audio files, multi-speaker audio dictionaries, or None input.
Args:
prompt_audio: Audio input in various formats (path, dict, tensor tuple, or None).
target_sample_rate: Target sample rate for processing.
Returns:
Processed audio tensor or None if no audio provided.
"""
if prompt_audio is None:
return None
if isinstance(prompt_audio, dict) and "speaker1" in prompt_audio and "speaker2" in prompt_audio:
return cls._merge_speaker_audios(prompt_audio["speaker1"], prompt_audio["speaker2"], target_sample_rate)
wav, _ = cls._load_audio_data(prompt_audio, target_sample_rate)
return wav
def _build_inputs(
self,
text: str,
audio_data: Optional["torch.Tensor"],
apply_chat_template: Callable[[str, dict], str],
silence_duration: float,
**kwargs,
) -> np.ndarray:
"""
Build input grid from text and optional audio data.
Creates a TxC grid where column 0 contains text tokens and columns 1..C-1 contain
quantized audio codebook tokens. Audio tokens are mapped to speech token range.
Args:
text: Input text string to process.
audio_data: Optional audio tensor with shape (channels, time).
apply_chat_template: Function to apply chat template formatting.
silence_duration: Duration of silence to append for encoder segmentation.
**kwargs: Additional arguments for chat template.
Returns:
NumPy array with shape (T, max_channels) containing the input grid.
"""
assert isinstance(text, str), "text must be a string"
prompt = apply_chat_template(text, kwargs)
text_ids = np.array(self.tokenizer.encode(prompt, add_special_tokens=False))
grid = np.full((text_ids.shape[0], self.max_channels), self.audio_pad_token_id, dtype=np.int64)
grid[:, 0] = text_ids
if audio_data is not None:
silence_samples = int(max(0.0, silence_duration) * self.input_sample_rate)
silence = torch.zeros(audio_data.shape[0], silence_samples, device=audio_data.device)
wav = torch.cat([audio_data, silence], dim=1)
feat = self.feature_extractor(
wav, sampling_rate=self.input_sample_rate, return_attention_mask=True, return_tensors="pt"
)
with torch.no_grad():
enc = self.audio_tokenizer.encode(feat)
# (time, codebooks)
audio_codes = enc["audio_codes"][:, 0].permute(1, 0).cpu().numpy()
# Map first codebook to speech token range
audio_codes[:, 0] = audio_codes[:, 0] + self.speech_token_range[0]
grid = np.concatenate([grid, audio_codes], axis=0)
# Trim silence tokens at the end based on encoder downsampling
silence_tokens = silence_duration * self.input_sample_rate / self.encoder_downsample_rate
cut = math.floor(silence_tokens / 10) * 10
if cut > 0:
grid = grid[:-cut]
return grid
@staticmethod
def _shift_inputs(input_ids: np.ndarray, pad_token_id: int, max_channels: int) -> np.ndarray:
"""
Convert (T, C) grid to time-shifted multi-channel layout (preserving original implementation logic).
Creates a shifted layout where new_len = T + C - 1, with column j shifted backwards by j positions.
This enables the model to process multiple codebook channels with temporal alignment.
Args:
input_ids: Input grid with shape (T, C).
pad_token_id: Padding token ID for text tokens.
max_channels: Maximum number of channels.
Returns:
Shifted array with shape (T + max_channels - 1, max_channels).
"""
T, _ = input_ids.shape
new_len = T + max_channels - 1
shifted = np.full((new_len, max_channels), fill_value=1024, dtype=np.int64)
shifted[:, 0] = np.full(new_len, pad_token_id, dtype=np.int64)
for j in range(max_channels):
shifted[j : (T + j), j] = input_ids[:, j]
return shifted
class MossTTSDProcessor(ProcessorMixin):
r"""
Constructs a MOSS-TTSD processor which wraps a tokenizer, feature extractor, and audio tokenizer into a single
processor. It provides unified text-speech processing capabilities while maintaining backward compatibility with
previous API versions.
[`MossTTSDProcessor`] offers all the functionalities of [`AutoTokenizer`], [`AutoFeatureExtractor`] and
[`XYTokenizer`]. See the [`~MossTTSDProcessor.__call__`] and [`~MossTTSDProcessor.decode`] for more information.
Args:
tokenizer ([`AutoTokenizer`]):
An instance of [`AutoTokenizer`]. The tokenizer is a required input.
feature_extractor ([`AutoFeatureExtractor`]):
An instance of [`AutoFeatureExtractor`]. The feature extractor is a required input.
audio_tokenizer ([`XYTokenizer`]):
An instance of [`XYTokenizer`]. The audio tokenizer is a required input.
chat_template (`str`, *optional*):
A template string for chat formatting when combining text and audio interactions.
speech_token_range (`List[int]`, *optional*, defaults to `[151665, 152689]`):
Token range [start, end] for mapping speech tokens.
audio_bos_token (`str`, *optional*, defaults to `"<|begin_of_speech|>"`):
Beginning of speech token string.
audio_eos_token (`str`, *optional*, defaults to `"<|end_of_speech|>"`):
End of speech token string.
audio_pad_token_id (`int`, *optional*, defaults to `1024`):
Padding token ID for audio channels.
"""
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
audio_tokenizer_class = "PreTrainedModel"
def __init__(
self,
tokenizer,
feature_extractor,
audio_tokenizer,
chat_template: Optional[str] = None,
speech_token_range: Optional[list[int]] = None,
audio_bos_token: str = "<|begin_of_speech|>",
audio_eos_token: str = "<|end_of_speech|>",
audio_pad_token_id: int = 1024,
**kwargs,
) -> None:
super().__init__(tokenizer=tokenizer, feature_extractor=feature_extractor, audio_tokenizer=audio_tokenizer, **kwargs)
self.max_channels = (audio_tokenizer.quantizer.num_quantizers if audio_tokenizer else None) or 8
self.input_sample_rate = (getattr(audio_tokenizer, "config", None).input_sample_rate if audio_tokenizer else None) or 16000
self.output_sample_rate = (getattr(audio_tokenizer, "config", None).output_sample_rate if audio_tokenizer else None) or 16000
self.encoder_downsample_rate = (getattr(audio_tokenizer, "config", None).encoder_downsample_rate if audio_tokenizer else None) or 320
# Use tokenizer's built-in chat template as primary
self.chat_template = getattr(tokenizer, "chat_template", None) or chat_template
# Read speech token range from tokenizer with fallback
self.speech_token_range = (
getattr(tokenizer, "speech_token_range", None) or speech_token_range or [151665, 152689]
)
self.audio_bos_token = getattr(tokenizer, "audio_bos_token", None) or audio_bos_token
self.audio_eos_token = getattr(tokenizer, "audio_eos_token", None) or audio_eos_token
self.audio_pad_token_id = getattr(tokenizer, "audio_pad_token_id", None) or audio_pad_token_id
# Sample-level processor
self.sample_processor = MossTTSDSampleProcessor(
tokenizer=self.tokenizer,
feature_extractor=self.feature_extractor,
audio_tokenizer=self.audio_tokenizer,
chat_template=self.chat_template,
speech_token_range=self.speech_token_range,
audio_bos_token=self.audio_bos_token,
audio_eos_token=self.audio_eos_token,
audio_pad_token_id=self.audio_pad_token_id,
max_channels=self.max_channels,
input_sample_rate=self.input_sample_rate,
encoder_downsample_rate=self.encoder_downsample_rate,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], trust_remote_code=True, **kwargs):
"""
Instantiate a processor from a pretrained model.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
The name of or path to the pretrained model.
**kwargs:
Additional keyword arguments passed to the respective component loaders.
Returns:
[`MossTTSDProcessor`]: A new instance of the processor.
"""
kwargs.pop("_from_auto")
audio_tokenizer_path = kwargs.pop("codec_path", os.path.join(pretrained_model_name_or_path, "XY_Tokenizer"))
assert isinstance(audio_tokenizer_path, str), f"Unsupported audio_tokenizer_path input format: {type(audio_tokenizer_path)}"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
feature_extractor = AutoFeatureExtractor.from_pretrained(audio_tokenizer_path, trust_remote_code=trust_remote_code, **kwargs)
audio_tokenizer = AutoModel.from_pretrained(audio_tokenizer_path, trust_remote_code=trust_remote_code, **kwargs)
return cls(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
audio_tokenizer=audio_tokenizer,
**kwargs,
)
@classmethod
def get_processor_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> tuple[dict[str, Any], dict[str, Any]]:
proc_dict, rest = super().get_processor_dict(pretrained_model_name_or_path, **kwargs)
if "audio_tokenizer" in rest:
proc_dict["audio_tokenizer"] = rest.pop("audio_tokenizer")
for key in ("speech_token_range", "audio_bos_token", "audio_eos_token", "audio_pad_token_id"):
if key in rest:
proc_dict[key] = rest.pop(key)
return proc_dict, rest
def __call__(
self,
data: Union[dict[str, Any], list[dict[str, Any]]],
**kwargs: Unpack[MossTTSDProcessorKwargs],
) -> BatchEncoding:
"""
Main method to prepare inputs for the model from structured data.
This method forwards the `data` and `kwargs` arguments to prepare inputs for MOSS-TTSD model. Please refer to the
docstring of the respective methods for more information.
Args:
data (`dict` or `list[dict]`):
Single dictionary or list of dictionaries containing input data. Expected keys include 'text',
'prompt_text', 'prompt_audio', etc.
**kwargs (`MossTTSDProcessorKwargs`):
Additional processing arguments.
Returns:
[`BatchEncoding`]: Processed inputs ready for model consumption.
"""
if isinstance(data, dict):
data = [data]
out_kwargs = self._merge_kwargs(MossTTSDProcessorKwargs, **kwargs)
text_kwargs = out_kwargs["text_kwargs"]
audio_kwargs = out_kwargs["audio_kwargs"]
common_kwargs = out_kwargs["common_kwargs"]
return_tensors = common_kwargs.get("return_tensors", "pt")
padding = common_kwargs.get("padding", True)
use_normalize = common_kwargs.get("use_normalize", False)
pad_token_id = int(text_kwargs.get("pad_token_id", self.tokenizer.pad_token_id or 0))
max_channels = int(audio_kwargs.get("max_channels", self.max_channels))
audio_pad_token_id = int(audio_kwargs.get("audio_pad_token_id", self.audio_pad_token_id))
silence_duration = float(audio_kwargs.get("silence_duration", 0.0))
def _apply_chat_template(text: str, extra: dict) -> str:
return self.apply_chat_template(conversation=None, text=text, **extra)
samples: list[MossTTSDChatSample] = []
for item in data:
sample = self.sample_processor.prepare_sample(
item,
apply_chat_template=_apply_chat_template,
use_normalize=use_normalize,
silence_duration=silence_duration,
)
# Override with call-time max_channels (may differ from component initialization)
if sample.input_ids_2d.shape[1] != max_channels:
# Simplified: for clipping/extending channels, only pad/clip on the right side
T, C = sample.input_ids_2d.shape
if C > max_channels:
sample.input_ids_2d = sample.input_ids_2d[:, :max_channels]
else:
pad = torch.full((T, max_channels - C), audio_pad_token_id, dtype=torch.long)
sample.input_ids_2d = torch.cat([sample.input_ids_2d, pad], dim=1)
samples.append(sample)
if not padding:
raise NotImplementedError("Unpadded batches are not supported yet.")
batch = self.sample_processor.collate(
samples,
pad_token_id=pad_token_id,
audio_pad_token_id=audio_pad_token_id,
)
# Align with HiggsAudioProcessor: explicit dict -> BatchEncoding/Feature
inputs = asdict(batch)
inputs = {k: v for k, v in inputs.items() if v is not None}
return BatchEncoding(inputs, tensor_type=return_tensors)
def shifting_outputs(
self,
output_ids: "torch.Tensor",
speech_token_range: list[int],
max_channels: int = 8,
) -> "torch.Tensor":
"""
Restore time-shifted layout to per-timestep C-channel arrangement and reverse-offset first codebook.
Converts the time-shifted multi-channel output back to standard (batch, time, channels) format
and maps the first codebook tokens back to their original space by subtracting the speech token offset.
Args:
output_ids: Time-shifted output tensor.
speech_token_range: Speech token range for reverse mapping.
max_channels: Number of codebook channels.
Returns:
Restored tensor with shape (batch, seq_len, max_channels).
"""
seq_len = output_ids.shape[1] - max_channels + 1
speech_ids = torch.full((output_ids.shape[0], seq_len, max_channels), 0, dtype=output_ids.dtype, device=output_ids.device)
for j in range(max_channels):
speech_ids[..., j] = output_ids[:, j : seq_len + j, j]
if j == 0:
speech_ids[..., j] = speech_ids[..., j] - speech_token_range[0]
return speech_ids
def _find_max_valid_positions(self, data: "torch.Tensor", invalid_value: int = 1024):
"""
Locate continuous valid audio segment intervals in each sequence (all non-text channels valid simultaneously).
Identifies contiguous spans where all audio channels (columns 1+) contain valid tokens
(not the invalid_value padding token).
Args:
data: Input tensor with shape (batch, time, channels).
invalid_value: Token ID considered as invalid/padding.
Returns:
List of lists containing valid audio segments for each sequence in the batch.
"""
mask = torch.all(data[:, :, 1:] != invalid_value, dim=2)
valid_indices = torch.where(mask)
result = [[] for _ in range(len(data))]
if valid_indices[0].numel() == 0:
return result
grouped = []
group_ids = []
for i, seq_no in enumerate(valid_indices[0]):
pos = valid_indices[1][i]
if not group_ids or seq_no > group_ids[-1]:
group_ids.append(seq_no)
grouped.append([[pos, pos + 1]])
elif pos == grouped[-1][-1][-1]:
grouped[-1][-1][-1] += 1
else:
grouped[-1].append([pos, pos + 1])
for gid, spans in zip(group_ids, grouped):
for s, e in spans:
result[gid].append(data[gid, s:e, :])
return result
def batch_decode(self, token_ids: "torch.Tensor", *args, **kwargs):
"""
Decode a batch of token sequences into text and audio outputs.
This method forwards the `token_ids` and `kwargs` arguments to decode text and audio outputs from the model.
Please refer to the docstring of the respective methods for more information.
Args:
token_ids (`torch.Tensor`):
Token tensor with shape (batch, time, channels).
*args:
Additional arguments passed to tokenizer.batch_decode.
**kwargs:
Additional keyword arguments passed to tokenizer.batch_decode.
Returns:
`tuple`: Tuple of (text_list, audio_list) where text_list contains decoded text strings and audio_list
contains decoded audio arrays for each sequence.
"""
assert token_ids.ndim == 3 and token_ids.shape[2] == self.max_channels
text = self.tokenizer.batch_decode(token_ids[:, :, 0], *args, **kwargs)
normal = self.shifting_outputs(token_ids, self.speech_token_range, self.max_channels)
audio_frags = self._find_max_valid_positions(normal, self.audio_pad_token_id)
decode_audio = []
for seq_frags in audio_frags:
if len(seq_frags):
frag = torch.cat([f.permute(1, 0).unsqueeze(1) for f in seq_frags], dim=1)
decode_audio.append(self.audio_tokenizer.decode(frag, overlap_seconds=10)["audio_values"])
else:
decode_audio.append([])
return text, decode_audio
def decode(self, token_ids: "torch.Tensor", *args, **kwargs) -> MossTTSDResponse:
"""
Decode a single sequence of token IDs into text and audio.
This method forwards the `token_ids` and `kwargs` arguments to decode a single sequence. Please refer to the
docstring of the respective methods for more information.
Args:
token_ids (`torch.Tensor`):
Token tensor with shape (time, channels).
*args:
Additional arguments passed to tokenizer.decode.
**kwargs:
Additional keyword arguments passed to tokenizer.decode.
Returns:
[`MossTTSDResponse`]: Response object containing generated text, audio, and sampling rate.
"""
assert token_ids.ndim == 2 and token_ids.shape[1] == self.max_channels
text = self.tokenizer.decode(token_ids[:, 0].squeeze(-1), *args, **kwargs)
normal = self.shifting_outputs(token_ids.unsqueeze(0), self.speech_token_range, self.max_channels)
audio_frags = self._find_max_valid_positions(normal, self.audio_pad_token_id)[0]
if len(audio_frags):
frag = torch.cat([f.permute(1, 0).unsqueeze(1) for f in audio_frags], dim=1)
audio = self.audio_tokenizer.decode(frag, overlap_seconds=10)["audio_values"]
else:
audio = None
return MossTTSDResponse(
audio=None if audio is None else audio.detach().cpu().numpy(),
generated_text=text,
sampling_rate=self.output_sample_rate,
)
def save_audio(self, audios, output_dir="output", prefix="audio"):
"""
Save multiple audio fragments to files.
Args:
audios: List of audio data fragments from batch_decode
output_dir (str): Directory to save audio files
prefix (str): Prefix for audio filenames
"""
if not is_torchaudio_available():
raise ImportError("Please install `torchaudio` to save audio files.")
os.makedirs(output_dir, exist_ok=True)
for i, data in enumerate(audios):
for j, fragment in enumerate(data):
filename = f"{output_dir}/{prefix}_{i}_{j}.wav"
torchaudio.save(filename, fragment.cpu(), self.output_sample_rate)
__all__ = ["MossTTSDProcessor"]
|