File size: 26,004 Bytes
c29df8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# coding=utf-8
# Copyright 2025 OpenMOSS and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MOSS-TTSD model."""
from dataclasses import dataclass
from typing import Optional, Union
from transformers.cache_utils import Cache
from transformers.generation import GenerationConfig, GenerationMixin, LogitsProcessorList, StoppingCriteriaList
from transformers.generation.logits_process import (
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
from transformers.generation.streamers import BaseStreamer
from transformers.generation.utils import GenerateDecoderOnlyOutput
from transformers.loss.loss_utils import ForCausalLMLoss
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen3.modeling_qwen3 import Qwen3Model
from transformers.utils import ModelOutput, auto_docstring, is_torch_available
from .configuration_moss_ttsd import MossTTSDConfig
if is_torch_available():
import torch
import torch.nn as nn
_CHECKPOINT_FOR_DOC = "fnlp/MOSS-TTSD-v0.5"
@dataclass
@auto_docstring(
custom_intro="""
Base class for MOSS-TTSD outputs, with hidden states and attentions.
"""
)
class MossTTSDOutputWithPast(ModelOutput):
"""Base class for MOSS-TTSD outputs with past key values."""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
loss_all: Optional[tuple[torch.FloatTensor, ...]] = None
logits_all: Optional[tuple[torch.FloatTensor, ...]] = None
past_key_values: Optional[tuple[tuple[torch.FloatTensor, ...], ...]] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
@dataclass
@auto_docstring(
custom_intro="""
Base class for MOSS-TTSD causal language model (or autoregressive) outputs.
"""
)
class MossTTSDCausalLMOutputWithPast(ModelOutput):
r"""
Base class for MOSS-TTSD causal language model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Cache] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
class MossTTSDGenerationMixin(GenerationMixin):
"""
Generation mixin for MossTTSD model with multi-channel support.
"""
def _setup_channel_processors(
self, generation_config: GenerationConfig, channels: int
) -> list[LogitsProcessorList]:
"""Setup logits processors for each channel based on generation config."""
realprocessor = [LogitsProcessorList() for _ in range(channels)]
if hasattr(generation_config, "layers"):
for i, layer_config in enumerate(generation_config.layers):
if i >= channels:
break
if layer_config.get("repetition_penalty") is not None:
realprocessor[i].append(
RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty"))
)
if layer_config.get("temperature") is not None:
realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature")))
if layer_config.get("top_k") is not None:
realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k")))
if layer_config.get("top_p") is not None:
realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p")))
return realprocessor
def _generate_next_tokens_with_scores(
self,
logits_all: tuple[torch.Tensor, ...],
input_ids: torch.LongTensor,
tf_inputs: torch.LongTensor,
channels: int,
realprocessor: list[LogitsProcessorList],
do_samples: list[bool],
speech_pad_idx: int,
) -> tuple[torch.LongTensor, tuple[torch.Tensor, ...], tuple[torch.Tensor, ...]]:
"""Generate next tokens for all channels with scores and logits."""
# Get next token logits
next_token_logits = tuple(logits[:, -1, :].clone().float().to(input_ids.device) for logits in logits_all)
# Apply channel-specific constraints
for i, channel_logits in enumerate(next_token_logits):
if i != 0 and input_ids.shape[1] + 1 > tf_inputs.shape[1] - 7 + i:
channel_logits[:, speech_pad_idx] = -torch.inf
if i == 0 and input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
channel_logits[:, self.config.speech_eos_token] = -torch.inf
# Process logits
next_token_scores = tuple(
realprocessor[i](input_ids[..., i], logits) for i, logits in enumerate(next_token_logits)
)
# Sample or select tokens
next_tokens = []
for i, channel_score in enumerate(next_token_scores):
if do_samples[i]:
channel_ntk = torch.multinomial(nn.functional.softmax(channel_score, dim=-1), num_samples=1).squeeze(1)
else:
channel_ntk = torch.argmax(channel_score, dim=-1)
next_tokens.append(channel_ntk)
return torch.stack(next_tokens, dim=-1), next_token_scores, next_token_logits
def _process_multi_channel_tokens(
self,
next_tokens: torch.LongTensor,
needs_additional_steps: torch.LongTensor,
input_ids: torch.LongTensor,
tf_inputs: torch.LongTensor,
base_length: int,
channels: int,
eos_token_id: Optional[int],
speech_pad_idx: int,
unfinished_sequences: torch.LongTensor,
has_eos_stopping_criteria: bool,
) -> tuple[torch.LongTensor, torch.LongTensor]:
"""Process tokens for multi-channel TTS generation."""
# Additional steps logic
indices = (~self.is_speech_token(next_tokens[:, 0])) & (needs_additional_steps < 0)
needs_additional_steps[indices] = channels - 1 # For 8 channels, need 7 steps
if input_ids.shape[1] + 1 <= tf_inputs.shape[1]:
i = input_ids.shape[1] + 1 - base_length
next_tokens[:, i:] = tf_inputs[:, input_ids.shape[1], i:]
# Replace tokens in additional steps
mask = (needs_additional_steps > 0) & (needs_additional_steps < 7)
if mask.any().item():
next_tokens[mask, 0] = eos_token_id
for i in range(1, channels):
mask_i = mask & (needs_additional_steps < channels - i)
next_tokens[mask_i, i] = speech_pad_idx
if has_eos_stopping_criteria:
for i in range(channels):
pddp = eos_token_id if i == 0 else speech_pad_idx
next_tokens[:, i] = next_tokens[:, i] * unfinished_sequences + pddp * (1 - unfinished_sequences)
return next_tokens, needs_additional_steps
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional[BaseStreamer],
**model_kwargs,
) -> Union[GenerateDecoderOnlyOutput, torch.LongTensor]:
"""Sample method for multi-channel TTS generation."""
# Extract configuration parameters
speech_pad_idx = getattr(self.config, "speech_pad_token", 1024)
eos_token_id = generation_config.eos_token_id
channels = getattr(self.config, "channels", 8)
# Generation config parameters
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# Initialize output tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# Initialize tracking variables
batch_size, cur_len, input_channels = input_ids.shape
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
needs_additional_steps = -1 * torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
# Adjust input for generation
tf_inputs = input_ids.clone()
input_ids = input_ids[:, : -(channels - 1)]
cur_len = input_ids.shape[1]
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, : -(channels - 1)]
base_length = input_ids.shape[1]
model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
# Setup logits processors and sampling config
if hasattr(generation_config, "do_samples") and generation_config.do_samples is not None:
do_samples = generation_config.do_samples
realprocessor = self._setup_channel_processors(generation_config, channels)
else:
do_samples = [do_sample for _ in range(channels)]
realprocessor = [logits_processor for _ in range(channels)]
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# Prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
# Forward pass
outputs = self(**model_inputs, return_dict=True)
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if synced_gpus and this_peer_finished:
continue
# Generate next tokens for all channels
next_tokens, next_token_scores, next_token_logits = self._generate_next_tokens_with_scores(
outputs.logits_all, input_ids, tf_inputs, channels, realprocessor, do_samples, speech_pad_idx
)
# Process tokens for multi-channel TTS
next_tokens, needs_additional_steps = self._process_multi_channel_tokens(
next_tokens,
needs_additional_steps,
input_ids,
tf_inputs,
base_length,
channels,
eos_token_id,
speech_pad_idx,
unfinished_sequences,
has_eos_stopping_criteria,
)
input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1)
if streamer is not None:
streamer.put(next_tokens[:, 0].cpu())
# Update unfinished_sequences
needs_additional_steps = torch.where(
needs_additional_steps > 0, needs_additional_steps - 1, needs_additional_steps
)
stopping = stopping_criteria(input_ids[..., 0], scores) | (needs_additional_steps == 0)
unfinished_sequences = unfinished_sequences & ~stopping
unfinished_sequences = unfinished_sequences | (needs_additional_steps > 0)
this_peer_finished = unfinished_sequences.max() == 0
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (outputs.attentions,)
if output_hidden_states:
decoder_hidden_states += (outputs.hidden_states,)
cur_len += 1
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
output_only: bool = True,
**kwargs,
):
batch_size, seq_len, channels = input_ids.shape
start_id = seq_len - channels + 1
outputs = super().generate(input_ids, **kwargs)
return_dict_in_generate = kwargs.get("return_dict_in_generate", False)
if return_dict_in_generate:
output_ids = outputs["sequences"]
else:
output_ids = outputs
if output_only:
output_ids = output_ids[:, start_id:]
if return_dict_in_generate:
outputs["sequences"] = output_ids
else:
outputs = output_ids
return outputs
class MossTTSDPretrainedModel(PreTrainedModel):
"""Base class for MOSS-TTSD pretrained models."""
config_class = MossTTSDConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
class MossTTSDModel(MossTTSDPretrainedModel):
"""MOSS-TTSD model for text-to-speech synthesis."""
def __init__(self, config: MossTTSDConfig):
super().__init__(config)
self.text_pad_idx = config.pad_token_id
self.speech_pad_idx = config.speech_pad_token
self.embedding_list = nn.ModuleList([])
self.embedding_list.append(nn.Embedding(config.vocab_size, config.hidden_size, self.text_pad_idx))
# Channels 1 to channels-1: Speech tokens only
for _ in range(1, config.channels):
self.embedding_list.append(nn.Embedding(config.speech_vocab_size, config.hidden_size, self.speech_pad_idx))
self.language_model = Qwen3Model(config)
self.post_init()
def get_input_embeddings(self):
"""Get the input embeddings for the model."""
return self.embedding_list[0]
def set_input_embeddings(self, value: nn.Embedding):
"""Set the input embeddings for the model."""
self.embedding_list[0] = value
def _prepare_multi_modal_inputs(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
"""
Prepare multi-modal embeddings from input_ids of shape (batch_size, channels, sequence_length).
For channel 0: text + speech tokens, for channels 1 to channels-1: speech tokens padded with speech_pad_token.
"""
batch_size, seq_length, channels = input_ids.shape
if channels != self.config.channels:
raise ValueError(f"Expected {self.config.channels} channels, got {channels}")
inputs_embeds = torch.zeros(
batch_size,
seq_length,
self.config.hidden_size,
device=input_ids.device,
dtype=self.embedding_list[0].weight.dtype,
)
for i in range(channels):
embed_layer = self.embedding_list[i]
channel_input = input_ids[..., i]
inputs_embeds += embed_layer(channel_input)
return inputs_embeds
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[tuple, BaseModelOutputWithPast]:
"""Forward pass for MOSS-TTSD model."""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if input_ids is not None:
inputs_embeds = self._prepare_multi_modal_inputs(input_ids)
return self.language_model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
class MossTTSDForCausalLM(MossTTSDPretrainedModel, MossTTSDGenerationMixin):
"""MOSS-TTSD model for causal language modeling with multi-channel support."""
_tied_weights_keys = []
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config: MossTTSDConfig):
super().__init__(config)
self.model = MossTTSDModel(config)
self.channels = config.channels
self.weights = [1 for _ in range(self.channels)]
self._tied_weights_keys = [f"lm_heads.{i}.weight" for i in range(self.channels)]
self.vocab_size = config.vocab_size
self.lm_heads = nn.ModuleList([])
self.lm_heads.append(nn.Linear(config.hidden_size, config.vocab_size, bias=False))
for _ in range(1, config.channels):
self.lm_heads.append(nn.Linear(config.hidden_size, config.speech_vocab_size, bias=False))
self.post_init()
def get_input_embeddings(self):
"""Get the input embeddings for the model."""
return self.model.embedding_list[0]
def can_generate(self):
"""Check if the model can generate."""
return True
def is_speech_token(self, tokens: torch.Tensor) -> torch.Tensor:
"""Check if tokens are speech tokens."""
return (tokens >= self.config.speech_token_range[0]) & (tokens < self.config.speech_token_range[1])
def tie_weights(self):
"""Tie the weights between input embeddings and output embeddings."""
for i in range(self.config.channels):
self._tie_or_clone_weights(self.lm_heads[i], self.model.embedding_list[i])
def set_input_embeddings(self, value: nn.Embedding):
"""Set the input embeddings for the model."""
self.model.embedding_list[0] = value
def get_output_embeddings(self):
"""Get the output embeddings for the model."""
return self.lm_heads[0]
def set_output_embeddings(self, new_embeddings: nn.Linear):
"""Set the output embeddings for the model."""
self.lm_heads[0] = new_embeddings
def set_decoder(self, decoder: MossTTSDModel):
"""Set the decoder for the model."""
self.model = decoder
def get_decoder(self):
"""Get the decoder for the model."""
return self.model
def set_weights(self, weights: list[float]):
"""Set the weights for different channels."""
self.weights = weights
def _compute_loss(
self, hidden_states: torch.Tensor, labels: torch.LongTensor, skip_logits: bool, **kwargs
) -> tuple[torch.Tensor, torch.Tensor, Optional[tuple[torch.Tensor, ...]]]:
"""Compute loss for all channels."""
device = hidden_states.device
loss_all = torch.empty(self.channels, device=device)
logits_list = []
for i in range(self.config.channels):
vocab_size = self.config.vocab_size if i == 0 else self.config.speech_vocab_size
logits = self.lm_heads[i](hidden_states)
loss_all[i] = ForCausalLMLoss(logits, labels[..., i], vocab_size)
if not skip_logits:
logits_list.append(logits)
logits_all = tuple(logits_list) if logits_list else None
# Compute weighted total loss
total_weight = sum(self.weights)
normalized_weights = [w / total_weight for w in self.weights]
total_loss = sum(w * loss for w, loss in zip(normalized_weights, loss_all))
return total_loss, loss_all, logits_all
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
skip_logits: Optional[bool] = None,
**kwargs,
) -> Union[tuple, MossTTSDOutputWithPast]:
"""Forward pass for MOSS-TTSD causal language model."""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
skip_logits = skip_logits if skip_logits is not None else (self.training and labels is not None)
if skip_logits and labels is None:
skip_logits = False
# Decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
logits_all = None
loss_all = None
total_loss = None
if labels is not None:
total_loss, loss_all, logits_all = self._compute_loss(hidden_states, labels, skip_logits, **kwargs)
else:
logits_all = [lm_head(hidden_states) for lm_head in self.lm_heads]
total_loss = None
loss_all = None
if not return_dict:
output = (logits_all,) + outputs[1:]
return (
(
total_loss,
loss_all,
)
+ output
if total_loss is not None
else output
)
return MossTTSDOutputWithPast(
loss=total_loss,
logits=logits_all[0] if logits_all is not None else None,
loss_all=loss_all,
logits_all=logits_all,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["MossTTSDModel", "MossTTSDForCausalLM"]
|