File size: 985 Bytes
eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 eb823ba f066ef4 a424f3c f066ef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
# Tokenizer
We trained our tokenizer using [sentencepiece](https://github.com/google/sentencepiece)'s unigram tokenizer. Then loaded the tokenizer as MT5TokenizerFast.
## Model
We used [MT5-base](https://huggingface.co/google/mt5-base) model.
## Datasets
We used [Code Search Net](https://huggingface.co/datasets/code_search_net)'s dataset and some scrapped data from internet to train the model. We maintained a list of datasets where each dataset had codes of same language.
## Plots
### Train loss

### Evaluation loss

### Evaluation accuracy

### Learning rate

## Fine tuning (WIP)
We fine tuned the model with [CodeXGLUE code-to-code-trans dataset](https://huggingface.co/datasets/code_x_glue_cc_code_to_code_trans), and scrapper data.
|