--- base_model: - BlinkDL/rwkv-7-world language: - en - zh - ja - ko - fr - ar - es - pt license: apache-2.0 metrics: - accuracy pipeline_tag: text-generation library_name: transformers --- # rwkv7-1.5B-world This is RWKV-7 model under flash-linear attention format. ## Model Details ### Model Description - **Developed by:** Bo Peng, Yu Zhang, Songlin Yang, Ruichong Zhang - **Funded by:** RWKV Project (Under LF AI & Data Foundation) - **Model type:** RWKV7 - **Language(s) (NLP):** English, Chinese, Japanese, Korean, French, Arabic, Spanish, Portuguese - **License:** Apache-2.0 - **Parameter count:** 1.52B - **Tokenizer:** RWKV World tokenizer - **Vocabulary size:** 65,536 ### Model Sources - **Repository:** https://github.com/fla-org/flash-linear-attention ; https://github.com/BlinkDL/RWKV-LM - **Paper:** [https://huggingface.co/papers/2503.14456](https://huggingface.co/papers/2503.14456) ## Uses Install `flash-linear-attention` and the latest version of `transformers` before using this model: ```bash pip install git+https://github.com/fla-org/flash-linear-attention pip install 'transformers>=4.48.0' ``` ### Direct Use You can use this model just as any other HuggingFace models: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True) model = model.cuda() prompt = "What is a large language model?" messages = [ {"role": "user", "content": "Who are you?"}, {"role": "assistant", "content": "I am a GPT-3 based model."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=1024, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0] print(response) ``` ## Training Details ### Training Data This model is trained on the World v3 with a total of 3.119 trillion tokens. #### Training Hyperparameters - **Training regime:** bfloat16, lr 4e-4 to 1e-5 "delayed" cosine decay, wd 0.1 (with increasing batch sizes during the middle) - **Final Loss:** 1.9965 - **Token Count:** 3.119 trillion ## Evaluation #### Metrics `lambada_openai`: before conversion: ppl 4.13 acc 69.4% after conversion: ppl 4.26 acc 68.8% (without apply temple) ## FAQ Q: safetensors metadata is none. A: upgrade transformers to >=4.48.0: `pip install 'transformers>=4.48.0'`