|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for RWKV."""
|
|
|
|
import os
|
|
import re
|
|
from typing import TYPE_CHECKING, List, Optional, Tuple
|
|
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
|
from transformers.utils import logging
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
pass
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
VOCAB_FILES_NAMES = {
|
|
"vocab_file": "rwkv_vocab_v20230424.txt",
|
|
}
|
|
|
|
class TRIE:
|
|
__slots__ = tuple("ch,to,values,front".split(","))
|
|
to: list
|
|
values: set
|
|
|
|
def __init__(self, front=None, ch=None):
|
|
self.ch = ch
|
|
self.to = [None for ch in range(256)]
|
|
self.values = set()
|
|
self.front = front
|
|
|
|
def __repr__(self):
|
|
fr = self
|
|
ret = []
|
|
while fr != None:
|
|
if fr.ch != None:
|
|
ret.append(fr.ch)
|
|
fr = fr.front
|
|
return "<TRIE %s %s>" % (ret[::-1], self.values)
|
|
|
|
def add(self, key: bytes, idx: int = 0, val=None):
|
|
if idx == len(key):
|
|
if val is None:
|
|
val = key
|
|
self.values.add(val)
|
|
return self
|
|
ch = key[idx]
|
|
if self.to[ch] is None:
|
|
self.to[ch] = TRIE(front=self, ch=ch)
|
|
return self.to[ch].add(key, idx=idx + 1, val=val)
|
|
|
|
def find_longest(self, key: bytes, idx: int = 0):
|
|
u: TRIE = self
|
|
ch: int = key[idx]
|
|
|
|
while u.to[ch] is not None:
|
|
u = u.to[ch]
|
|
idx += 1
|
|
if u.values:
|
|
ret = idx, u, u.values
|
|
if idx == len(key):
|
|
break
|
|
ch = key[idx]
|
|
return ret
|
|
|
|
|
|
class RWKV_TOKENIZER:
|
|
def __init__(self, file_name):
|
|
self.idx2token = {}
|
|
sorted = []
|
|
with open(file_name, "r", encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
for l in lines:
|
|
idx = int(l[: l.index(" ")])
|
|
x = eval(l[l.index(" ") : l.rindex(" ")])
|
|
x = x.encode("utf-8") if isinstance(x, str) else x
|
|
assert isinstance(x, bytes)
|
|
|
|
assert len(x) == int(l[l.rindex(" ") :])
|
|
sorted += [x]
|
|
self.idx2token[idx] = x
|
|
|
|
self.token2idx = {}
|
|
for k, v in self.idx2token.items():
|
|
self.token2idx[v] = int(k)
|
|
|
|
self.root = TRIE()
|
|
for t, i in self.token2idx.items():
|
|
_ = self.root.add(t, val=(t, i))
|
|
|
|
def encodeBytes(self, src: bytes):
|
|
idx: int = 0
|
|
tokens = []
|
|
while idx < len(src):
|
|
_idx: int = idx
|
|
idx, _, values = self.root.find_longest(src, idx)
|
|
assert idx != _idx
|
|
_, token = next(iter(values))
|
|
tokens.append(token)
|
|
return tokens
|
|
|
|
def decodeBytes(self, tokens):
|
|
return b"".join(map(lambda i: self.idx2token[i], tokens))
|
|
|
|
def encode(self, src):
|
|
if isinstance(src, str):
|
|
return [self.encodeBytes(src.encode("utf-8"))]
|
|
elif isinstance(src, list):
|
|
return [self.encodeBytes(s.encode("utf-8")) for s in src]
|
|
|
|
def decode(self, tokens):
|
|
return [self.decodeBytes(batch).decode("utf-8") for batch in tokens]
|
|
|
|
|
|
|
|
|
|
|
|
def printTokens(self, tokens):
|
|
for i in tokens:
|
|
s = self.idx2token[i]
|
|
try:
|
|
s = s.decode("utf-8")
|
|
except:
|
|
pass
|
|
print(f"{repr(s)}{i}", end=" ")
|
|
print()
|
|
|
|
|
|
class RwkvTokenizer(PreTrainedTokenizer):
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self, vocab_file, bos_token="<|rwkv_tokenizer_end_of_text|>", eos_token="<|rwkv_tokenizer_end_of_text|>", unk_token="<|rwkv_tokenizer_end_of_text|>", **kwargs
|
|
):
|
|
if not os.path.isfile(vocab_file):
|
|
raise ValueError(
|
|
f"Can't find a vocabulary file at path '{vocab_file}'."
|
|
)
|
|
|
|
with open(vocab_file, "r", encoding="utf-8") as reader:
|
|
tokens = reader.readlines()
|
|
|
|
if "add_bos_token" in kwargs:
|
|
self.add_bos_token = kwargs["add_bos_token"]
|
|
else:
|
|
self.add_bos_token = False
|
|
self.trie_tokenizer = RWKV_TOKENIZER(vocab_file)
|
|
vocab = self.trie_tokenizer.token2idx
|
|
self.encoder = vocab
|
|
self.decoder = {v: k for k, v in vocab.items()}
|
|
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
|
super().__init__(
|
|
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
|
|
)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.encoder)
|
|
|
|
def get_vocab(self):
|
|
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
def _tokenize(self, text, split_special_tokens=False):
|
|
|
|
return self.trie_tokenizer.encode(text)[0]
|
|
|
|
def _convert_token_to_id(self, token):
|
|
return token
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (byte) using the vocab."""
|
|
token = self.decoder.get(index, self.unk_token)
|
|
if isinstance(token, (bytes)):
|
|
token = token.decode("utf-8", errors="replace")
|
|
return token
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
|
out_string = b"".join(
|
|
[k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]
|
|
).decode("utf-8")
|
|
return out_string
|
|
|
|
def save_vocabulary(
|
|
self, save_directory: str, filename_prefix: Optional[str] = None
|
|
) -> Tuple[str]:
|
|
index = 0
|
|
if os.path.isdir(save_directory):
|
|
vocab_file = os.path.join(
|
|
save_directory,
|
|
(filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
|
|
)
|
|
else:
|
|
vocab_file = (
|
|
filename_prefix + "-" if filename_prefix else ""
|
|
) + save_directory
|
|
with open(vocab_file, "w", encoding="utf-8") as writer:
|
|
for token, token_index in sorted(
|
|
self.encoder.items(), key=lambda kv: kv[1]
|
|
):
|
|
if index != token_index:
|
|
logger.warning(
|
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
|
" Please check that the vocabulary is not corrupted!"
|
|
)
|
|
index = token_index
|
|
writer.write(str(token) + "\n")
|
|
index += 1
|
|
return (vocab_file,)
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
if self.add_bos_token:
|
|
bos_token_ids = [self.bos_token_id]
|
|
else:
|
|
bos_token_ids = []
|
|
|
|
output = bos_token_ids + token_ids_0
|
|
|
|
if token_ids_1 is None:
|
|
return output
|
|
|
|
return output + bos_token_ids + token_ids_1
|
|
|
|
def get_special_tokens_mask(
|
|
self,
|
|
token_ids_0: List[int],
|
|
token_ids_1: Optional[List[int]] = None,
|
|
already_has_special_tokens: bool = False,
|
|
) -> List[int]:
|
|
"""
|
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0,
|
|
token_ids_1=token_ids_1,
|
|
already_has_special_tokens=True,
|
|
)
|
|
|
|
if not self.add_bos_token:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0,
|
|
token_ids_1=token_ids_1,
|
|
already_has_special_tokens=False,
|
|
)
|
|
|
|
if token_ids_1 is None:
|
|
return [1] + ([0] * len(token_ids_0))
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
|
|