zhiyuan8 commited on
Commit
42a337b
·
verified ·
1 Parent(s): 3855ba7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -2
README.md CHANGED
@@ -63,7 +63,7 @@ You can use this model just as any other HuggingFace models:
63
  from transformers import AutoModelForCausalLM, AutoTokenizer
64
  model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-1.5B-g1', trust_remote_code=True)
65
  tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-1.5B-g1', trust_remote_code=True)
66
- model = model.cuda()
67
  prompt = "What is a large language model?"
68
  messages = [
69
  {"role": "user", "content": prompt}
@@ -71,13 +71,18 @@ messages = [
71
  text = tokenizer.apply_chat_template(
72
  messages,
73
  tokenize=False,
74
- add_generation_prompt=True
 
75
  )
76
 
77
  model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
78
  generated_ids = model.generate(
79
  **model_inputs,
80
  max_new_tokens=1024,
 
 
 
 
81
  )
82
  generated_ids = [
83
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 
63
  from transformers import AutoModelForCausalLM, AutoTokenizer
64
  model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-1.5B-g1', trust_remote_code=True)
65
  tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-1.5B-g1', trust_remote_code=True)
66
+ model = model.cuda() # Supported on Nvidia/AMD/Intel eg. model.xpu()
67
  prompt = "What is a large language model?"
68
  messages = [
69
  {"role": "user", "content": prompt}
 
71
  text = tokenizer.apply_chat_template(
72
  messages,
73
  tokenize=False,
74
+ add_generation_prompt=True,
75
+ enable_thinking=True # Default is True, set to False to disable thinking
76
  )
77
 
78
  model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
79
  generated_ids = model.generate(
80
  **model_inputs,
81
  max_new_tokens=1024,
82
+ do_sample=True,
83
+ temperature=1.0,
84
+ top_p=0.3,
85
+ repetition_penalty=1.2
86
  )
87
  generated_ids = [
88
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)