File size: 16,826 Bytes
8b992ec 7265450 8b992ec b32599e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# !pip install --ignore-installed flask flask-ngrok
# !wget https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-linux-amd64.tgz
# !apt update && apt upgrade -y
# !apt-get install p7zip-full -y
# !tar -xvzf ngrok-v3-stable-linux-amd64.tgz
# !./ngrok authtoken YOUR_NGROK_TOKEN
# !pip install -r requirements.txt
import streamlit as st
import tempfile
import os
import time
import re
import numpy as np
import torch
from PIL import Image
from decord import VideoReader, cpu
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set page configuration
st.set_page_config(page_title="Omni DeepSeek Video Analysis", layout="wide")
# Constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# Add CSS for text wrapping and vertical scrollbar for the expander
st.markdown("""
<style>
.output-text {
white-space: pre-wrap !important;
word-wrap: break-word !important;
}
.streamlit-expanderContent {
white-space: pre-wrap !important;
word-wrap: break-word !important;
max-height: 100px; /* 根据需要调整高度 */
overflow-y: auto; /* 添加垂直滚动条 */
}
</style>
""", unsafe_allow_html=True)
# Model loading utilities
@st.cache_resource
def load_model_and_tokenizer():
"""Load and cache the model and tokenizer"""
path = 'AlphaTok/omni-deepseek-v0'
with st.spinner("Loading model (this may take a minute)..."):
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval()
# Move to GPU if available
if torch.cuda.is_available():
model = model.cuda()
st.success("Model loaded on GPU")
else:
st.warning("GPU not available, running on CPU (inference will be slow)")
tokenizer = AutoTokenizer.from_pretrained(
path,
trust_remote_code=True,
use_fast=False
)
return model, tokenizer
# Video processing functions
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# Calculate the target aspect ratio
def find_closest_aspect_ratio(aspect_ratio, target_ratios):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
return best_ratio
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
# Save uploaded file to a temporary location
def save_uploaded_file(uploaded_file):
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp:
tmp.write(uploaded_file.getvalue())
return tmp.name
def process_video_and_run_inference(video_path, prompt, model, tokenizer):
# 加载并预处理视频
with st.spinner("Processing video..."):
pixel_values, num_patches_list = load_video(
video_path,
num_segments=16,
max_num=1
)
if torch.cuda.is_available():
pixel_values = pixel_values.to(torch.bfloat16).cuda()
else:
pixel_values = pixel_values.to(torch.bfloat16)
# 初始化用于文本生成的 streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# 启动模型对话线程
thread = Thread(
target=model.chat,
kwargs=dict(
tokenizer=tokenizer,
pixel_values=pixel_values,
question=prompt,
history=None,
return_history=False,
generation_config=generation_config,
)
)
thread.start()
# 用于累积模型原始输出的变量
raw_output = ""
# 初始化状态变量,用于拆分 think 和 regular 部分
think_mode = False
think_content = ""
regular_content = ""
# 针对每个从 streamer 中获取的文本块进行处理
for new_text in streamer:
# 将原始新文本累加到 raw_output 中
raw_output += new_text
pos = 0
while pos < len(new_text):
idx_think = new_text.find("<think>", pos)
idx_think_close = new_text.find("</think>", pos)
# 如果本段中没有任何标签,则将剩余内容加入当前模式,并退出循环
if idx_think == -1 and idx_think_close == -1:
if think_mode:
think_content += new_text[pos:]
yield {"type": "think", "content": think_content}
else:
regular_content += new_text[pos:]
yield {"type": "regular", "content": regular_content}
break
# 如果 <think> 出现得更早或 </think> 不存在
if idx_think != -1 and (idx_think_close == -1 or idx_think < idx_think_close):
# 先处理标签前的内容
if think_mode:
think_content += new_text[pos:idx_think]
yield {"type": "think", "content": think_content}
else:
regular_content += new_text[pos:idx_think]
yield {"type": "regular", "content": regular_content}
pos = idx_think + len("<think>")
think_mode = True
else:
# 处理 </think> 出现的情况
if think_mode:
think_content += new_text[pos:idx_think_close]
yield {"type": "think", "content": think_content}
think_content = "" # 清空 think 内容缓存
else:
regular_content += new_text[pos:idx_think_close]
yield {"type": "regular", "content": regular_content}
pos = idx_think_close + len("</think>")
think_mode = False
thread.join() # 确保线程结束
# 在终端打印完整的模型原始输出
print("Complete raw model output:")
print(raw_output)
# Main app function
def main():
st.title("Video Analysis with Omni DeepSeek")
st.markdown("Upload a video and provide a prompt to analyze it.")
# Load model and tokenizer
model, tokenizer = load_model_and_tokenizer()
# Sidebar for inputs
with st.sidebar:
st.header("Upload and Settings")
video_file = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv"])
# 添加提示词模板选择,下拉框中包含默认模板和omni-matrix模板
template_option = st.selectbox("Select Prompt Template", options=["Default", "Omni-Matrix Template"])
if template_option == "Default":
prompt = st.text_area("Enter your prompt", value="Please describe this video", height=100)
else:
prompt = st.text_area("Enter your prompt", value=f"""
Analyze the video and determine whether the user requires assistance based on the video activity type and behavior. Generate the output in the following structured JSON format:
1. **help_needed**: A boolean value (true or false) indicating whether the user needs help based on the video content.
2. **video_description**: A brief description of the video content.
3. **video_type**: The type of activity in the video. Options include working, meeting, coding, gaming, watching, or other.
4. **function_call_name**: If help_needed is true, specify the name of the function to provide assistance. Options include draft_copy (drafting a copy), assist_coding (coding assistance), web_search (web search). If no help is needed, return an empty string.
5. **function_call_parameters**: If help is needed, provide the required parameters for the function call; otherwise, return an empty array. The parameters are defined as follows:
- **draft_copy**: Two strings - the first one is the copy subject and the second one is the copy content.
-- copy_subject(str): The subject of the copy
-- copy_content(str): The content of the copy
- **web_search**:
-- web_search_content(str): A single string containing the search query.
- **assist_coding**:
-- coding_subject(str): The subject of the code
-- coding_content(str): The content of the code
**Input Requirements:**
The input is a description of the video, and the model needs to analyze it to determine user behavior and generate a JSON response in the following format:
json
{{
"help_needed": true/false,
"video_description": "Brief description of the video content",
"video_type": "working"/"meeting"/"coding"/"gaming"/"watching"/"other",
"function_call_name": "draft_email/assist_coding/web_search",
"function_call_parameters": {{
"parameter1":"parameter1 content",
"parameter2":"parameter2 content"
}}
}}
**Examples:**
1. If the video shows the user debugging code and repeatedly checking documentation:
json
{{
"help_needed": true,
"video_description": "The user is debugging code and may need assistance.",
"video_type": "coding",
"function_call_name": "assist_coding",
"function_call_parameters": {{
"coding_subject": "Help the user implement quicksort.",
"coding_content": "
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
"
}}
}}
2. If the video shows the user watching a movie and no assistance is required:
json
{{
"help_needed": false,
"video_description": "The user is watching a movie.",
"video_type": "watching",
"function_call_name": "",
"function_call_parameters": []
}}
3. If the video shows the user writing an email and might need assistance drafting it:
json
{{
"help_needed": true,
"video_description": "The user is writing an email and may need assistance.",
"video_type": "working",
"function_call_name": "draft_copy",
"function_call_parameters": {{
"copy_subject": "Follow-up Meeting",
"copy_content": "Please confirm your availability for the next meeting."
}}
}}
4. If the video shows the user searching for a specific topic online:
json
{{
"help_needed": true,
"video_description": "The user is searching for information online.",
"video_type": "working",
"function_call_name": "web_search",
"function_call_parameters": {{
"web_search_content": "latest AI research papers"
}}
}}
""", height=400)
run_button = st.button("Analyze Video", type="primary")
st.markdown("---")
st.markdown("### Model Information")
st.info("Using AlphaTok/omni-deepseek-v0 model")
# Main content area with two columns
col1, col2 = st.columns([1, 1])
with col1:
st.header("Input")
if video_file:
st.video(video_file)
st.text(f"Prompt: {prompt}")
with col2:
st.header("Output")
# 将 thinking 折叠框默认展开
thinking_container = st.expander("Thinking Process", expanded=True)
output_container = st.container()
if run_button and video_file and prompt:
# Save the uploaded video
video_path = save_uploaded_file(video_file)
# Create a progress bar
progress_bar = st.progress(0.0)
# Placeholders for streaming output
thinking_placeholder = thinking_container.empty()
output_placeholder = output_container.empty()
try:
progress_step = 0
# 在流式输出过程中将进度条固定显示在 90%
for result in process_video_and_run_inference(video_path, prompt, model, tokenizer):
progress_step += 1
progress_bar.progress(min(0.9, progress_step / 1024))
if result["type"] == "think":
thinking_placeholder.markdown(f"""<div class="output-text">{result['content']}</div>""", unsafe_allow_html=True)
elif result["type"] == "regular":
content = result["content"]
if re.search(r'```\s*json\s*\{', content):
json_content = re.search(r'```\s*json\s*(\{.*?\})\s*```', content, re.DOTALL)
if json_content:
output_placeholder.json(json_content.group(1))
else:
output_placeholder.markdown(f"""<div class="output-text">{content}</div>""", unsafe_allow_html=True)
else:
output_placeholder.markdown(f"""<div class="output-text">{content}</div>""", unsafe_allow_html=True)
# 模型生成结束后完成进度条更新
progress_bar.progress(1.0)
time.sleep(0.5)
progress_bar.empty()
os.unlink(video_path)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if os.path.exists(video_path):
os.unlink(video_path)
if __name__ == "__main__":
main()
|