End of training
Browse files
README.md
CHANGED
|
@@ -25,16 +25,16 @@ model-index:
|
|
| 25 |
metrics:
|
| 26 |
- name: Accuracy
|
| 27 |
type: accuracy
|
| 28 |
-
value: 0.
|
| 29 |
- name: Precision
|
| 30 |
type: precision
|
| 31 |
-
value: 0.
|
| 32 |
- name: Recall
|
| 33 |
type: recall
|
| 34 |
-
value: 0.
|
| 35 |
- name: F1
|
| 36 |
type: f1
|
| 37 |
-
value: 0.
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
-
- Loss: 1.
|
| 48 |
-
- Accuracy: 0.
|
| 49 |
-
- Precision: 0.
|
| 50 |
-
- Recall: 0.
|
| 51 |
-
- F1: 0.
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
@@ -68,11 +68,11 @@ More information needed
|
|
| 68 |
|
| 69 |
The following hyperparameters were used during training:
|
| 70 |
- learning_rate: 1e-05
|
| 71 |
-
- train_batch_size:
|
| 72 |
-
- eval_batch_size:
|
| 73 |
- seed: 42
|
| 74 |
- gradient_accumulation_steps: 3
|
| 75 |
-
- total_train_batch_size:
|
| 76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 77 |
- lr_scheduler_type: linear
|
| 78 |
- lr_scheduler_warmup_ratio: 0.1
|
|
@@ -83,100 +83,104 @@ The following hyperparameters were used during training:
|
|
| 83 |
|
| 84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 85 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 86 |
-
| 2.
|
| 87 |
-
| 2.
|
| 88 |
-
| 2.
|
| 89 |
-
| 2.
|
| 90 |
-
|
|
| 91 |
-
|
|
| 92 |
-
| 1.
|
| 93 |
-
| 1.
|
| 94 |
-
| 1.
|
| 95 |
-
| 1.
|
| 96 |
-
| 1.
|
| 97 |
-
| 1.
|
| 98 |
-
| 1.
|
| 99 |
-
| 1.
|
| 100 |
-
| 1.
|
| 101 |
-
| 1.
|
| 102 |
-
| 1.
|
| 103 |
-
| 1.
|
| 104 |
-
| 1.
|
| 105 |
-
| 1.
|
| 106 |
-
| 1.
|
| 107 |
-
| 1.
|
| 108 |
-
| 1.
|
| 109 |
-
| 1.
|
| 110 |
-
| 1.
|
| 111 |
-
| 1.
|
| 112 |
-
| 1.
|
| 113 |
-
| 1.
|
| 114 |
-
| 1.
|
| 115 |
-
| 1.
|
| 116 |
-
| 1.
|
| 117 |
-
| 1.
|
| 118 |
-
| 1.
|
| 119 |
-
| 1.
|
| 120 |
-
| 1.
|
| 121 |
-
| 1.
|
| 122 |
-
| 1.
|
| 123 |
-
| 1.
|
| 124 |
-
| 1.
|
| 125 |
-
| 1.
|
| 126 |
-
| 1.
|
| 127 |
-
| 1.
|
| 128 |
-
| 1.
|
| 129 |
-
| 1.
|
| 130 |
-
| 1.
|
| 131 |
-
| 1.
|
| 132 |
-
| 1.
|
| 133 |
-
| 1.
|
| 134 |
-
| 1.
|
| 135 |
-
| 1.
|
| 136 |
-
| 1.
|
| 137 |
-
| 1.
|
| 138 |
-
| 0.
|
| 139 |
-
| 0.
|
| 140 |
-
| 0.
|
| 141 |
-
| 0.
|
| 142 |
-
| 0.
|
| 143 |
-
| 0.
|
| 144 |
-
| 0.
|
| 145 |
-
| 0.
|
| 146 |
-
| 0.
|
| 147 |
-
| 0.
|
| 148 |
-
| 0.
|
| 149 |
-
| 0.
|
| 150 |
-
| 0.
|
| 151 |
-
| 0.
|
| 152 |
-
| 0.
|
| 153 |
-
| 0.
|
| 154 |
-
| 0.
|
| 155 |
-
| 0.
|
| 156 |
-
| 0.
|
| 157 |
-
| 0.
|
| 158 |
-
| 0.
|
| 159 |
-
| 0.
|
| 160 |
-
| 0.
|
| 161 |
-
| 0.
|
| 162 |
-
| 0.
|
| 163 |
-
| 0.
|
| 164 |
-
| 0.
|
| 165 |
-
| 0.
|
| 166 |
-
| 0.
|
| 167 |
-
| 0.
|
| 168 |
-
| 0.
|
| 169 |
-
| 0.
|
| 170 |
-
| 0.
|
| 171 |
-
| 0.
|
| 172 |
-
| 0.
|
| 173 |
-
| 0.
|
| 174 |
-
| 0.
|
| 175 |
-
| 0.
|
| 176 |
-
| 0.
|
| 177 |
-
| 0.
|
| 178 |
-
| 0.
|
| 179 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
|
| 182 |
### Framework versions
|
|
|
|
| 25 |
metrics:
|
| 26 |
- name: Accuracy
|
| 27 |
type: accuracy
|
| 28 |
+
value: 0.6375
|
| 29 |
- name: Precision
|
| 30 |
type: precision
|
| 31 |
+
value: 0.6498416164333246
|
| 32 |
- name: Recall
|
| 33 |
type: recall
|
| 34 |
+
value: 0.6375
|
| 35 |
- name: F1
|
| 36 |
type: f1
|
| 37 |
+
value: 0.6340720916258936
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
+
- Loss: 1.1334
|
| 48 |
+
- Accuracy: 0.6375
|
| 49 |
+
- Precision: 0.6498
|
| 50 |
+
- Recall: 0.6375
|
| 51 |
+
- F1: 0.6341
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
|
|
| 68 |
|
| 69 |
The following hyperparameters were used during training:
|
| 70 |
- learning_rate: 1e-05
|
| 71 |
+
- train_batch_size: 16
|
| 72 |
+
- eval_batch_size: 16
|
| 73 |
- seed: 42
|
| 74 |
- gradient_accumulation_steps: 3
|
| 75 |
+
- total_train_batch_size: 48
|
| 76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 77 |
- lr_scheduler_type: linear
|
| 78 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
|
| 83 |
|
| 84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 85 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 86 |
+
| 2.0671 | 0.97 | 13 | 2.0660 | 0.125 | 0.2709 | 0.125 | 0.1135 |
|
| 87 |
+
| 2.0576 | 1.95 | 26 | 2.0563 | 0.1562 | 0.2932 | 0.1562 | 0.1402 |
|
| 88 |
+
| 2.044 | 3.0 | 40 | 2.0439 | 0.1875 | 0.2554 | 0.1875 | 0.1827 |
|
| 89 |
+
| 2.0209 | 3.98 | 53 | 2.0309 | 0.2062 | 0.2405 | 0.2062 | 0.1961 |
|
| 90 |
+
| 1.9938 | 4.95 | 66 | 2.0176 | 0.2188 | 0.2410 | 0.2188 | 0.2062 |
|
| 91 |
+
| 1.9894 | 6.0 | 80 | 1.9960 | 0.2625 | 0.2700 | 0.2625 | 0.2438 |
|
| 92 |
+
| 1.9667 | 6.97 | 93 | 1.9743 | 0.3125 | 0.3089 | 0.3125 | 0.2901 |
|
| 93 |
+
| 1.9158 | 7.95 | 106 | 1.9421 | 0.3063 | 0.2557 | 0.3063 | 0.2687 |
|
| 94 |
+
| 1.8834 | 9.0 | 120 | 1.9042 | 0.3375 | 0.4019 | 0.3375 | 0.2888 |
|
| 95 |
+
| 1.8461 | 9.97 | 133 | 1.8521 | 0.3625 | 0.4132 | 0.3625 | 0.3021 |
|
| 96 |
+
| 1.7917 | 10.95 | 146 | 1.8023 | 0.3688 | 0.4144 | 0.3688 | 0.3056 |
|
| 97 |
+
| 1.7685 | 12.0 | 160 | 1.7552 | 0.375 | 0.4062 | 0.375 | 0.2978 |
|
| 98 |
+
| 1.7072 | 12.97 | 173 | 1.7071 | 0.3875 | 0.4266 | 0.3875 | 0.3164 |
|
| 99 |
+
| 1.6926 | 13.95 | 186 | 1.6742 | 0.375 | 0.4056 | 0.375 | 0.2996 |
|
| 100 |
+
| 1.6084 | 15.0 | 200 | 1.6476 | 0.3937 | 0.4411 | 0.3937 | 0.3358 |
|
| 101 |
+
| 1.6264 | 15.97 | 213 | 1.6231 | 0.3812 | 0.4357 | 0.3812 | 0.3311 |
|
| 102 |
+
| 1.5531 | 16.95 | 226 | 1.6019 | 0.4125 | 0.4676 | 0.4125 | 0.3626 |
|
| 103 |
+
| 1.5804 | 18.0 | 240 | 1.5773 | 0.3937 | 0.4442 | 0.3937 | 0.3428 |
|
| 104 |
+
| 1.54 | 18.98 | 253 | 1.5606 | 0.4 | 0.4565 | 0.4 | 0.3527 |
|
| 105 |
+
| 1.5461 | 19.95 | 266 | 1.5464 | 0.4437 | 0.5084 | 0.4437 | 0.4028 |
|
| 106 |
+
| 1.4841 | 21.0 | 280 | 1.5323 | 0.4313 | 0.4950 | 0.4313 | 0.3881 |
|
| 107 |
+
| 1.4765 | 21.98 | 293 | 1.5121 | 0.4313 | 0.4884 | 0.4313 | 0.3822 |
|
| 108 |
+
| 1.4838 | 22.95 | 306 | 1.4978 | 0.4375 | 0.5138 | 0.4375 | 0.4012 |
|
| 109 |
+
| 1.4487 | 24.0 | 320 | 1.4791 | 0.4437 | 0.5059 | 0.4437 | 0.4001 |
|
| 110 |
+
| 1.4272 | 24.98 | 333 | 1.4617 | 0.4562 | 0.5304 | 0.4562 | 0.4180 |
|
| 111 |
+
| 1.3886 | 25.95 | 346 | 1.4488 | 0.4625 | 0.5418 | 0.4625 | 0.4303 |
|
| 112 |
+
| 1.4529 | 27.0 | 360 | 1.4436 | 0.45 | 0.5147 | 0.45 | 0.4035 |
|
| 113 |
+
| 1.3894 | 27.98 | 373 | 1.4267 | 0.4688 | 0.5488 | 0.4688 | 0.4355 |
|
| 114 |
+
| 1.3848 | 28.95 | 386 | 1.4153 | 0.4625 | 0.5337 | 0.4625 | 0.4264 |
|
| 115 |
+
| 1.3561 | 30.0 | 400 | 1.3993 | 0.4875 | 0.5521 | 0.4875 | 0.4554 |
|
| 116 |
+
| 1.3184 | 30.98 | 413 | 1.3852 | 0.4813 | 0.5526 | 0.4813 | 0.4470 |
|
| 117 |
+
| 1.282 | 31.95 | 426 | 1.3703 | 0.4813 | 0.5480 | 0.4813 | 0.4449 |
|
| 118 |
+
| 1.2988 | 33.0 | 440 | 1.3674 | 0.4688 | 0.5541 | 0.4688 | 0.4395 |
|
| 119 |
+
| 1.2507 | 33.98 | 453 | 1.3594 | 0.4688 | 0.5347 | 0.4688 | 0.4307 |
|
| 120 |
+
| 1.2446 | 34.95 | 466 | 1.3519 | 0.4813 | 0.5616 | 0.4813 | 0.4514 |
|
| 121 |
+
| 1.2877 | 36.0 | 480 | 1.3547 | 0.4875 | 0.5599 | 0.4875 | 0.4605 |
|
| 122 |
+
| 1.2237 | 36.98 | 493 | 1.3342 | 0.5 | 0.5744 | 0.5 | 0.4654 |
|
| 123 |
+
| 1.2416 | 37.95 | 506 | 1.3214 | 0.4813 | 0.5693 | 0.4813 | 0.4551 |
|
| 124 |
+
| 1.1786 | 39.0 | 520 | 1.3122 | 0.4875 | 0.5674 | 0.4875 | 0.4586 |
|
| 125 |
+
| 1.193 | 39.98 | 533 | 1.2989 | 0.5 | 0.5755 | 0.5 | 0.4774 |
|
| 126 |
+
| 1.148 | 40.95 | 546 | 1.2962 | 0.5125 | 0.5811 | 0.5125 | 0.4755 |
|
| 127 |
+
| 1.1904 | 42.0 | 560 | 1.2860 | 0.5188 | 0.5863 | 0.5188 | 0.4928 |
|
| 128 |
+
| 1.1311 | 42.98 | 573 | 1.2893 | 0.5312 | 0.5936 | 0.5312 | 0.5117 |
|
| 129 |
+
| 1.1396 | 43.95 | 586 | 1.2860 | 0.4938 | 0.5633 | 0.4938 | 0.4698 |
|
| 130 |
+
| 1.1235 | 45.0 | 600 | 1.2802 | 0.5 | 0.5725 | 0.5 | 0.4758 |
|
| 131 |
+
| 1.1638 | 45.98 | 613 | 1.2596 | 0.525 | 0.5909 | 0.525 | 0.5058 |
|
| 132 |
+
| 1.0777 | 46.95 | 626 | 1.2668 | 0.5188 | 0.5796 | 0.5188 | 0.4861 |
|
| 133 |
+
| 1.1136 | 48.0 | 640 | 1.2520 | 0.55 | 0.6100 | 0.55 | 0.5291 |
|
| 134 |
+
| 1.047 | 48.98 | 653 | 1.2437 | 0.5375 | 0.5963 | 0.5375 | 0.5279 |
|
| 135 |
+
| 1.1101 | 49.95 | 666 | 1.2527 | 0.55 | 0.6195 | 0.55 | 0.5279 |
|
| 136 |
+
| 1.0412 | 51.0 | 680 | 1.2455 | 0.525 | 0.5927 | 0.525 | 0.5156 |
|
| 137 |
+
| 1.041 | 51.98 | 693 | 1.2245 | 0.55 | 0.6073 | 0.55 | 0.5353 |
|
| 138 |
+
| 0.9906 | 52.95 | 706 | 1.2307 | 0.575 | 0.6420 | 0.575 | 0.5600 |
|
| 139 |
+
| 0.9863 | 54.0 | 720 | 1.2307 | 0.5563 | 0.6150 | 0.5563 | 0.5362 |
|
| 140 |
+
| 0.943 | 54.98 | 733 | 1.2270 | 0.55 | 0.6152 | 0.55 | 0.5302 |
|
| 141 |
+
| 0.9557 | 55.95 | 746 | 1.2063 | 0.5312 | 0.5964 | 0.5312 | 0.5239 |
|
| 142 |
+
| 0.9518 | 57.0 | 760 | 1.2122 | 0.55 | 0.6232 | 0.55 | 0.5433 |
|
| 143 |
+
| 0.9545 | 57.98 | 773 | 1.1955 | 0.575 | 0.6144 | 0.575 | 0.5563 |
|
| 144 |
+
| 0.9195 | 58.95 | 786 | 1.2139 | 0.5563 | 0.6052 | 0.5563 | 0.5459 |
|
| 145 |
+
| 0.9267 | 60.0 | 800 | 1.1907 | 0.5687 | 0.6052 | 0.5687 | 0.5595 |
|
| 146 |
+
| 0.9384 | 60.98 | 813 | 1.1899 | 0.575 | 0.6449 | 0.575 | 0.5650 |
|
| 147 |
+
| 0.8727 | 61.95 | 826 | 1.1854 | 0.5813 | 0.6312 | 0.5813 | 0.5651 |
|
| 148 |
+
| 0.8541 | 63.0 | 840 | 1.1957 | 0.575 | 0.6407 | 0.575 | 0.5632 |
|
| 149 |
+
| 0.8899 | 63.98 | 853 | 1.1604 | 0.575 | 0.6196 | 0.575 | 0.5694 |
|
| 150 |
+
| 0.9036 | 64.95 | 866 | 1.1859 | 0.5563 | 0.6310 | 0.5563 | 0.5306 |
|
| 151 |
+
| 0.8177 | 66.0 | 880 | 1.1498 | 0.6125 | 0.6316 | 0.6125 | 0.6116 |
|
| 152 |
+
| 0.7854 | 66.97 | 893 | 1.1842 | 0.5687 | 0.6142 | 0.5687 | 0.5582 |
|
| 153 |
+
| 0.8054 | 67.95 | 906 | 1.1695 | 0.5938 | 0.6275 | 0.5938 | 0.5830 |
|
| 154 |
+
| 0.8582 | 69.0 | 920 | 1.1882 | 0.5687 | 0.6057 | 0.5687 | 0.5495 |
|
| 155 |
+
| 0.7603 | 69.97 | 933 | 1.2067 | 0.55 | 0.6025 | 0.55 | 0.5348 |
|
| 156 |
+
| 0.763 | 70.95 | 946 | 1.1690 | 0.5625 | 0.6036 | 0.5625 | 0.5439 |
|
| 157 |
+
| 0.8261 | 72.0 | 960 | 1.1616 | 0.6062 | 0.6306 | 0.6062 | 0.6016 |
|
| 158 |
+
| 0.884 | 72.97 | 973 | 1.1952 | 0.5625 | 0.6082 | 0.5625 | 0.5436 |
|
| 159 |
+
| 0.7843 | 73.95 | 986 | 1.1583 | 0.5687 | 0.5953 | 0.5687 | 0.5633 |
|
| 160 |
+
| 0.801 | 75.0 | 1000 | 1.1547 | 0.575 | 0.6013 | 0.575 | 0.5745 |
|
| 161 |
+
| 0.7454 | 75.97 | 1013 | 1.1372 | 0.5875 | 0.6193 | 0.5875 | 0.5761 |
|
| 162 |
+
| 0.7325 | 76.95 | 1026 | 1.1696 | 0.5938 | 0.6351 | 0.5938 | 0.5919 |
|
| 163 |
+
| 0.7931 | 78.0 | 1040 | 1.1511 | 0.6062 | 0.6342 | 0.6062 | 0.6053 |
|
| 164 |
+
| 0.7487 | 78.97 | 1053 | 1.1655 | 0.5625 | 0.5898 | 0.5625 | 0.5496 |
|
| 165 |
+
| 0.7262 | 79.95 | 1066 | 1.1394 | 0.6125 | 0.6295 | 0.6125 | 0.6048 |
|
| 166 |
+
| 0.7669 | 81.0 | 1080 | 1.1748 | 0.575 | 0.5966 | 0.575 | 0.5697 |
|
| 167 |
+
| 0.7028 | 81.97 | 1093 | 1.1418 | 0.5875 | 0.6178 | 0.5875 | 0.5885 |
|
| 168 |
+
| 0.7749 | 82.95 | 1106 | 1.1736 | 0.55 | 0.5446 | 0.55 | 0.5255 |
|
| 169 |
+
| 0.7233 | 84.0 | 1120 | 1.1645 | 0.5813 | 0.5973 | 0.5813 | 0.5699 |
|
| 170 |
+
| 0.5915 | 84.97 | 1133 | 1.1376 | 0.5875 | 0.6167 | 0.5875 | 0.5867 |
|
| 171 |
+
| 0.6985 | 85.95 | 1146 | 1.1665 | 0.5687 | 0.5868 | 0.5687 | 0.5533 |
|
| 172 |
+
| 0.6572 | 87.0 | 1160 | 1.1341 | 0.6 | 0.6245 | 0.6 | 0.5963 |
|
| 173 |
+
| 0.6317 | 87.97 | 1173 | 1.1327 | 0.6125 | 0.6288 | 0.6125 | 0.6026 |
|
| 174 |
+
| 0.6546 | 88.95 | 1186 | 1.1668 | 0.5687 | 0.5797 | 0.5687 | 0.5528 |
|
| 175 |
+
| 0.5801 | 90.0 | 1200 | 1.1521 | 0.5875 | 0.6161 | 0.5875 | 0.5818 |
|
| 176 |
+
| 0.6958 | 90.97 | 1213 | 1.1401 | 0.5875 | 0.6083 | 0.5875 | 0.5774 |
|
| 177 |
+
| 0.5856 | 91.95 | 1226 | 1.1379 | 0.5875 | 0.5888 | 0.5875 | 0.5760 |
|
| 178 |
+
| 0.6281 | 93.0 | 1240 | 1.1379 | 0.6125 | 0.6429 | 0.6125 | 0.6123 |
|
| 179 |
+
| 0.6518 | 93.97 | 1253 | 1.1619 | 0.6312 | 0.6547 | 0.6312 | 0.6247 |
|
| 180 |
+
| 0.6055 | 94.95 | 1266 | 1.1700 | 0.575 | 0.5962 | 0.575 | 0.5673 |
|
| 181 |
+
| 0.6181 | 96.0 | 1280 | 1.1550 | 0.5938 | 0.6281 | 0.5938 | 0.5970 |
|
| 182 |
+
| 0.6601 | 96.97 | 1293 | 1.1334 | 0.6375 | 0.6498 | 0.6375 | 0.6341 |
|
| 183 |
+
| 0.6112 | 97.5 | 1300 | 1.1007 | 0.6188 | 0.6341 | 0.6188 | 0.6207 |
|
| 184 |
|
| 185 |
|
| 186 |
### Framework versions
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 343242432
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98b8815686c2d285fafdf47e5bd09f32dd248071d07f019d6c7d0cff86e6b8c4
|
| 3 |
size 343242432
|
runs/Feb13_02-56-35_0b73b82a108e/events.out.tfevents.1707794948.0b73b82a108e.1967.2
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cb67969cfd48da19128b6dec2fde9e7ab7427b4255391d61b025f183f402ec2
|
| 3 |
+
size 560
|