--- base_model: - THUDM/CogView4-6B datasets: - multimodalart/1920-raider-waite-tarot-public-domain library_name: diffusers license: other license_link: https://huggingface.co/THUDM/CogView4-6B/blob/main/LICENSE widget: - text: >- TRTCRD a trtcrd of a knight mounting a running horse wearing an armor and holding a staff, \"knight of wands\" output: url: final-5000-0-2-TRTCRD-a-trtcrd-of-a-knig-1741262717.173147.png - text: >- TRTCRD a trtcrd of a woman sitting on a throne, wearing a crown and holding a trophee, \"queen of cups\" output: url: final-5000-1-2-TRTCRD-a-trtcrd-of-a-woma-1741262717.2762468.png - text: >- TRTCRD a trtcrd of a person in a red robe holding a scale and giving coins to two kneeling figures, surrounded by six pentacles output: url: final-5000-1-2-TRTCRD-a-trtcrd-of-a-pers-1741262755.184284.png tags: - text-to-image - diffusers-training - diffusers - template:sd-lora - cogview4 --- This is a LoRA fine-tune of the [THUDM/CogView4-6B](https://huggingface.co/THUDM/CogView4-6B) model. Code: https://github.com/a-r-r-o-w/finetrainers Inference code: ```python import torch from diffusers import CogView4Pipeline from diffusers.utils import export_to_video pipe = CogView4Pipeline.from_pretrained( "THUDM/CogView4-6B", torch_dtype=torch.bfloat16 ).to("cuda") pipe.load_lora_weights("finetrainers/CogView4-6B-rider-waite-tarot-v0-shifted-sigmas", adapter_name="cogview4-lora") pipe.set_adapters(["cogview4-lora"], [0.9]) image = pipe("").images[0] image.save("output.png") ``` Training logs are available on WandB [here](https://wandb.ai/aryanvs/finetrainers-cogview4). NOTE: this checkpoint uses shifted_sigmas logit_normal weighting. For sigmas logit_normal weighting, check https://huggingface.co/finetrainers/CogView4-6B-rider-waite-tarot-v0