diff --git "a/modeling_bert.py" "b/modeling_bert.py"
new file mode 100644--- /dev/null
+++ "b/modeling_bert.py"
@@ -0,0 +1,2357 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
+# Copyright (c) 2023 Jina AI GmbH. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch BERT model."""
+
+
+import math
+import os
+import warnings
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+import numpy as np
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from transformers.activations import ACT2FN
+from transformers.modeling_outputs import (
+    BaseModelOutputWithPastAndCrossAttentions,
+    BaseModelOutputWithPoolingAndCrossAttentions,
+    CausalLMOutputWithCrossAttentions,
+    MaskedLMOutput,
+    MultipleChoiceModelOutput,
+    NextSentencePredictorOutput,
+    QuestionAnsweringModelOutput,
+    SequenceClassifierOutput,
+    TokenClassifierOutput,
+)
+from transformers.modeling_utils import PreTrainedModel
+from transformers.pytorch_utils import (
+    apply_chunking_to_forward,
+    find_pruneable_heads_and_indices,
+    prune_linear_layer,
+)
+from transformers.utils import (
+    ModelOutput,
+    add_code_sample_docstrings,
+    add_start_docstrings,
+    add_start_docstrings_to_model_forward,
+    logging,
+    replace_return_docstrings,
+)
+from .configuration_bert import JinaBertConfig
+
+# Torch implementation
+try:
+    from torch.nn.functional import scaled_dot_product_attention
+except ImportError:
+    scaled_dot_product_attention = None
+
+# This is used by encode but user may not have it installed
+try:
+    from tqdm.autonotebook import trange
+
+    has_tqdm = True
+except ImportError:
+    has_tqdm = False
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "bert-base-uncased"
+_CONFIG_FOR_DOC = "JinaBertConfig"
+
+# TokenClassification docstring
+_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = (
+    "dbmdz/bert-large-cased-finetuned-conll03-english"
+)
+_TOKEN_CLASS_EXPECTED_OUTPUT = "['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
+_TOKEN_CLASS_EXPECTED_LOSS = 0.01
+
+# QuestionAnswering docstring
+_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
+_QA_EXPECTED_OUTPUT = "'a nice puppet'"
+_QA_EXPECTED_LOSS = 7.41
+_QA_TARGET_START_INDEX = 14
+_QA_TARGET_END_INDEX = 15
+
+# SequenceClassification docstring
+_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
+_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
+_SEQ_CLASS_EXPECTED_LOSS = 0.01
+
+
+def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
+    """Load tf checkpoints in a pytorch model."""
+    try:
+        import re
+
+        import numpy as np
+        import tensorflow as tf
+    except ImportError:
+        logger.error(
+            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+            "https://www.tensorflow.org/install/ for installation instructions."
+        )
+        raise
+    tf_path = os.path.abspath(tf_checkpoint_path)
+    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+    # Load weights from TF model
+    init_vars = tf.train.list_variables(tf_path)
+    names = []
+    arrays = []
+    for name, shape in init_vars:
+        logger.info(f"Loading TF weight {name} with shape {shape}")
+        array = tf.train.load_variable(tf_path, name)
+        names.append(name)
+        arrays.append(array)
+
+    for name, array in zip(names, arrays):
+        name = name.split("/")
+        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+        # which are not required for using pretrained model
+        if any(
+            n
+            in [
+                "adam_v",
+                "adam_m",
+                "AdamWeightDecayOptimizer",
+                "AdamWeightDecayOptimizer_1",
+                "global_step",
+            ]
+            for n in name
+        ):
+            logger.info(f"Skipping {'/'.join(name)}")
+            continue
+        pointer = model
+        for m_name in name:
+            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+                scope_names = re.split(r"_(\d+)", m_name)
+            else:
+                scope_names = [m_name]
+            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+                pointer = getattr(pointer, "weight")
+            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+                pointer = getattr(pointer, "bias")
+            elif scope_names[0] == "output_weights":
+                pointer = getattr(pointer, "weight")
+            elif scope_names[0] == "squad":
+                pointer = getattr(pointer, "classifier")
+            else:
+                try:
+                    pointer = getattr(pointer, scope_names[0])
+                except AttributeError:
+                    logger.info(f"Skipping {'/'.join(name)}")
+                    continue
+            if len(scope_names) >= 2:
+                num = int(scope_names[1])
+                pointer = pointer[num]
+        if m_name[-11:] == "_embeddings":
+            pointer = getattr(pointer, "weight")
+        elif m_name == "kernel":
+            array = np.transpose(array)
+        try:
+            if pointer.shape != array.shape:
+                raise ValueError(
+                    f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
+                )
+        except ValueError as e:
+            e.args += (pointer.shape, array.shape)
+            raise
+        logger.info(f"Initialize PyTorch weight {name}")
+        pointer.data = torch.from_numpy(array)
+    return model
+
+
+class JinaBertEmbeddings(nn.Module):
+    """Construct the embeddings from word, position and token_type embeddings."""
+
+    def __init__(self, config: JinaBertConfig):
+        super().__init__()
+        self.word_embeddings = nn.Embedding(
+            config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
+        )
+        if config.position_embedding_type != "alibi":
+            self.position_embeddings = nn.Embedding(
+                config.max_position_embeddings, config.hidden_size
+            )
+        self.token_type_embeddings = nn.Embedding(
+            config.type_vocab_size, config.hidden_size
+        )
+
+        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+        # any TensorFlow checkpoint file
+        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+        self.dropout = nn.Dropout(config.hidden_dropout_prob)
+        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+        self.position_embedding_type = getattr(
+            config, "position_embedding_type", "absolute"
+        )
+        self.register_buffer(
+            "position_ids",
+            torch.arange(config.max_position_embeddings).expand((1, -1)),
+            persistent=False,
+        )
+        self.register_buffer(
+            "token_type_ids",
+            torch.zeros(self.position_ids.size(), dtype=torch.long),
+            persistent=False,
+        )
+
+    def forward(
+        self,
+        input_ids: Optional[torch.LongTensor] = None,
+        token_type_ids: Optional[torch.LongTensor] = None,
+        position_ids: Optional[torch.LongTensor] = None,
+        inputs_embeds: Optional[torch.FloatTensor] = None,
+        past_key_values_length: int = 0,
+    ) -> torch.Tensor:
+        if input_ids is not None:
+            input_shape = input_ids.size()
+        else:
+            input_shape = inputs_embeds.size()[:-1]
+
+        seq_length = input_shape[1]
+
+        if position_ids is None:
+            position_ids = self.position_ids[
+                :, past_key_values_length : seq_length + past_key_values_length
+            ]
+
+        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+        # issue #5664
+        if token_type_ids is None:
+            if hasattr(self, "token_type_ids"):
+                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
+                    input_shape[0], seq_length
+                )
+                token_type_ids = buffered_token_type_ids_expanded
+            else:
+                token_type_ids = torch.zeros(
+                    input_shape, dtype=torch.long, device=self.position_ids.device
+                )
+
+        if inputs_embeds is None:
+            inputs_embeds = self.word_embeddings(input_ids)
+        token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+        embeddings = inputs_embeds + token_type_embeddings
+        if self.position_embedding_type == "absolute":
+            position_embeddings = self.position_embeddings(position_ids)
+            embeddings += position_embeddings
+        embeddings = self.LayerNorm(embeddings)
+        embeddings = self.dropout(embeddings)
+        return embeddings
+
+
+class JinaBertSelfAttention(nn.Module):
+    def __init__(self, config: JinaBertConfig, position_embedding_type=None):
+        super().__init__()
+        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
+            config, "embedding_size"
+        ):
+            raise ValueError(
+                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+                f"heads ({config.num_attention_heads})"
+            )
+        
+        self.attn_implementation = config.attn_implementation
+        self.num_attention_heads = config.num_attention_heads
+        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+        self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+        self.query = nn.Linear(config.hidden_size, self.all_head_size)
+        self.key = nn.Linear(config.hidden_size, self.all_head_size)
+        self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+        self.dropout_p = config.attention_probs_dropout_prob
+        self.dropout = nn.Dropout(self.dropout_p)
+        self.position_embedding_type = position_embedding_type or getattr(
+            config, "position_embedding_type", "absolute"
+        )
+        if (
+            self.position_embedding_type == "relative_key"
+            or self.position_embedding_type == "relative_key_query"
+        ):
+            self.max_position_embeddings = config.max_position_embeddings
+            self.distance_embedding = nn.Embedding(
+                2 * config.max_position_embeddings - 1, self.attention_head_size
+            )
+
+        self.is_decoder = config.is_decoder
+
+    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+        new_x_shape = x.size()[:-1] + (
+            self.num_attention_heads,
+            self.attention_head_size,
+        )
+        x = x.view(new_x_shape)
+        return x.permute(0, 2, 1, 3)
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        head_mask: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        output_attentions: Optional[bool] = False,
+        bias: Optional[torch.FloatTensor] = None,
+    ) -> Tuple[torch.Tensor]:
+        mixed_query_layer = self.query(hidden_states)
+
+        # If this is instantiated as a cross-attention module, the keys
+        # and values come from an encoder; the attention mask needs to be
+        # such that the encoder's padding tokens are not attended to.
+        is_cross_attention = encoder_hidden_states is not None
+
+        if is_cross_attention and past_key_value is not None:
+            # reuse k,v, cross_attentions
+            key_layer = past_key_value[0]
+            value_layer = past_key_value[1]
+            attention_mask = encoder_attention_mask
+        elif is_cross_attention:
+            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+            attention_mask = encoder_attention_mask
+        elif past_key_value is not None:
+            key_layer = self.transpose_for_scores(self.key(hidden_states))
+            value_layer = self.transpose_for_scores(self.value(hidden_states))
+            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+        else:
+            key_layer = self.transpose_for_scores(self.key(hidden_states))
+            value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+        query_layer = self.transpose_for_scores(mixed_query_layer)
+
+        use_cache = past_key_value is not None
+        if self.is_decoder:
+            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+            # Further calls to cross_attention layer can then reuse all cross-attention
+            # key/value_states (first "if" case)
+            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+            # all previous decoder key/value_states. Further calls to uni-directional self-attention
+            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+            # if encoder bi-directional self-attention `past_key_value` is always `None`
+            past_key_value = (key_layer, value_layer)
+
+        if self.attn_implementation == 'torch' and scaled_dot_product_attention is not None:
+            b, _, s, _ = query_layer.shape
+            new_bias = attention_mask + bias
+            dropout_p = self.dropout_p if self.training else 0.0
+            attn = scaled_dot_product_attention(query_layer, key_layer, value_layer, new_bias, dropout_p=dropout_p)
+            attn = attn.permute(0, 2, 1, 3).contiguous()
+            return (attn.view(b, s, self.all_head_size),)
+
+        # Take the dot product between "query" and "key" to get the raw attention scores.
+        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+        if (
+            self.position_embedding_type == "relative_key"
+            or self.position_embedding_type == "relative_key_query"
+        ):
+            query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+            if use_cache:
+                position_ids_l = torch.tensor(
+                    key_length - 1, dtype=torch.long, device=hidden_states.device
+                ).view(-1, 1)
+            else:
+                position_ids_l = torch.arange(
+                    query_length, dtype=torch.long, device=hidden_states.device
+                ).view(-1, 1)
+            position_ids_r = torch.arange(
+                key_length, dtype=torch.long, device=hidden_states.device
+            ).view(1, -1)
+            distance = position_ids_l - position_ids_r
+
+            positional_embedding = self.distance_embedding(
+                distance + self.max_position_embeddings - 1
+            )
+            positional_embedding = positional_embedding.to(
+                dtype=query_layer.dtype
+            )  # fp16 compatibility
+
+            if self.position_embedding_type == "relative_key":
+                relative_position_scores = torch.einsum(
+                    "bhld,lrd->bhlr", query_layer, positional_embedding
+                )
+                attention_scores = attention_scores + relative_position_scores
+            elif self.position_embedding_type == "relative_key_query":
+                relative_position_scores_query = torch.einsum(
+                    "bhld,lrd->bhlr", query_layer, positional_embedding
+                )
+                relative_position_scores_key = torch.einsum(
+                    "bhrd,lrd->bhlr", key_layer, positional_embedding
+                )
+                attention_scores = (
+                    attention_scores
+                    + relative_position_scores_query
+                    + relative_position_scores_key
+                )
+
+        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+        if attention_mask is not None:
+            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+            attention_scores = attention_scores + attention_mask
+
+        # Normalize the attention scores to probabilities.
+        attention_probs = nn.functional.softmax(attention_scores + bias, dim=-1)
+
+        # This is actually dropping out entire tokens to attend to, which might
+        # seem a bit unusual, but is taken from the original Transformer paper.
+        attention_probs = self.dropout(attention_probs)
+
+        # Mask heads if we want to
+        if head_mask is not None:
+            attention_probs = attention_probs * head_mask
+
+        context_layer = torch.matmul(attention_probs, value_layer)
+
+        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+        context_layer = context_layer.view(new_context_layer_shape)
+
+        outputs = (
+            (context_layer, attention_probs) if output_attentions else (context_layer,)
+        )
+
+        if self.is_decoder:
+            outputs = outputs + (past_key_value,)
+        return outputs
+
+
+class JinaBertSelfOutput(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+        self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+    def forward(
+        self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
+    ) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.dropout(hidden_states)
+        hidden_states = self.LayerNorm(hidden_states + input_tensor)
+        return hidden_states
+
+
+class JinaBertAttention(nn.Module):
+    def __init__(self, config, position_embedding_type=None):
+        super().__init__()
+        self.self = JinaBertSelfAttention(
+            config, position_embedding_type=position_embedding_type
+        )
+        self.output = JinaBertSelfOutput(config)
+        self.pruned_heads = set()
+
+    def prune_heads(self, heads):
+        if len(heads) == 0:
+            return
+        heads, index = find_pruneable_heads_and_indices(
+            heads,
+            self.self.num_attention_heads,
+            self.self.attention_head_size,
+            self.pruned_heads,
+        )
+
+        # Prune linear layers
+        self.self.query = prune_linear_layer(self.self.query, index)
+        self.self.key = prune_linear_layer(self.self.key, index)
+        self.self.value = prune_linear_layer(self.self.value, index)
+        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+        # Update hyper params and store pruned heads
+        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+        self.self.all_head_size = (
+            self.self.attention_head_size * self.self.num_attention_heads
+        )
+        self.pruned_heads = self.pruned_heads.union(heads)
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        head_mask: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        output_attentions: Optional[bool] = False,
+        bias: Optional[torch.FloatTensor] = None,
+    ) -> Tuple[torch.Tensor]:
+        self_outputs = self.self(
+            hidden_states,
+            attention_mask,
+            head_mask,
+            encoder_hidden_states,
+            encoder_attention_mask,
+            past_key_value,
+            output_attentions,
+            bias,
+        )
+        attention_output = self.output(self_outputs[0], hidden_states)
+        outputs = (attention_output,) + self_outputs[
+            1:
+        ]  # add attentions if we output them
+        return outputs
+
+
+class JinaBertIntermediate(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+        if isinstance(config.hidden_act, str):
+            self.intermediate_act_fn = ACT2FN[config.hidden_act]
+        else:
+            self.intermediate_act_fn = config.hidden_act
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.intermediate_act_fn(hidden_states)
+        return hidden_states
+
+
+class JinaBertOutput(nn.Module):
+    def __init__(self, config: JinaBertConfig):
+        super().__init__()
+        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+        self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+    def forward(
+        self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
+    ) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.dropout(hidden_states)
+        hidden_states = self.LayerNorm(hidden_states + input_tensor)
+        return hidden_states
+
+
+class JinaBertGLUMLP(nn.Module):
+    def __init__(self, config: JinaBertConfig):
+        super().__init__()
+        self.config = config
+        self.gated_layers = nn.Linear(
+            config.hidden_size, config.intermediate_size * 2, bias=False
+        )
+        if config.feed_forward_type == 'reglu':
+            self.act = nn.ReLU()
+        elif config.feed_forward_type == 'geglu':
+            self.act = nn.GELU()
+        else:
+            raise ValueError(
+                f"feed_forward_type {config.feed_forward_type} not supported"
+            )
+        self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
+        self.dropout = nn.Dropout(config.hidden_dropout_prob)
+        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        residual_connection = hidden_states
+        # compute the activation
+        hidden_states = self.gated_layers(hidden_states)
+        gated = hidden_states[:, :, : self.config.intermediate_size]
+        non_gated = hidden_states[:, :, self.config.intermediate_size :]
+        hidden_states = self.act(gated) * non_gated
+        hidden_states = self.dropout(hidden_states)
+        # multiply by the second matrix
+        hidden_states = self.wo(hidden_states)
+        # add the residual connection and post-LN
+        hidden_states = self.layernorm(hidden_states + residual_connection)
+        return hidden_states
+
+
+class JinaBertLayer(nn.Module):
+    def __init__(self, config: JinaBertConfig):
+        super().__init__()
+        self.chunk_size_feed_forward = config.chunk_size_feed_forward
+        self.seq_len_dim = 1
+        self.attention = JinaBertAttention(config)
+        self.is_decoder = config.is_decoder
+        self.add_cross_attention = config.add_cross_attention
+        self.feed_forward_type = config.feed_forward_type
+        if self.add_cross_attention:
+            if not self.is_decoder:
+                raise ValueError(
+                    f"{self} should be used as a decoder model if cross attention is added"
+                )
+            self.crossattention = JinaBertAttention(
+                config, position_embedding_type="absolute"
+            )
+        if self.feed_forward_type.endswith('glu'):
+            self.mlp = JinaBertGLUMLP(config)
+        else:
+            self.intermediate = JinaBertIntermediate(config)
+            self.output = JinaBertOutput(config)
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        head_mask: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+        bias: Optional[torch.FloatTensor] = None,
+        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        output_attentions: Optional[bool] = False,
+    ) -> Tuple[torch.Tensor]:
+        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+        self_attn_past_key_value = (
+            past_key_value[:2] if past_key_value is not None else None
+        )
+        self_attention_outputs = self.attention(
+            hidden_states,
+            attention_mask,
+            head_mask,
+            output_attentions=output_attentions,
+            past_key_value=self_attn_past_key_value,
+            bias=bias,
+        )
+        attention_output = self_attention_outputs[0]
+
+        # if decoder, the last output is tuple of self-attn cache
+        if self.is_decoder:
+            outputs = self_attention_outputs[1:-1]
+            present_key_value = self_attention_outputs[-1]
+        else:
+            outputs = self_attention_outputs[
+                1:
+            ]  # add self attentions if we output attention weights
+
+        cross_attn_present_key_value = None
+        if self.is_decoder and encoder_hidden_states is not None:
+            if not hasattr(self, "crossattention"):
+                raise ValueError(
+                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+                    " by setting `config.add_cross_attention=True`"
+                )
+
+            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+            cross_attn_past_key_value = (
+                past_key_value[-2:] if past_key_value is not None else None
+            )
+            cross_attention_outputs = self.crossattention(
+                attention_output,
+                attention_mask,
+                head_mask,
+                encoder_hidden_states,
+                encoder_attention_mask,
+                cross_attn_past_key_value,
+                output_attentions,
+            )
+            attention_output = cross_attention_outputs[0]
+            outputs = (
+                outputs + cross_attention_outputs[1:-1]
+            )  # add cross attentions if we output attention weights
+
+            # add cross-attn cache to positions 3,4 of present_key_value tuple
+            cross_attn_present_key_value = cross_attention_outputs[-1]
+            present_key_value = present_key_value + cross_attn_present_key_value
+
+        if self.feed_forward_type.endswith('glu'):
+            layer_output = self.mlp(attention_output)
+        else:
+            layer_output = apply_chunking_to_forward(
+                self.feed_forward_chunk,
+                self.chunk_size_feed_forward,
+                self.seq_len_dim,
+                attention_output,
+            )
+        outputs = (layer_output,) + outputs
+
+        # if decoder, return the attn key/values as the last output
+        if self.is_decoder:
+            outputs = outputs + (present_key_value,)
+
+        return outputs
+
+    def feed_forward_chunk(self, attention_output):
+        intermediate_output = self.intermediate(attention_output)
+        layer_output = self.output(intermediate_output, attention_output)
+        return layer_output
+
+
+class JinaBertEncoder(nn.Module):
+    def __init__(self, config: JinaBertConfig):
+        super().__init__()
+        self.config = config
+        self.layer = nn.ModuleList(
+            [JinaBertLayer(config) for _ in range(config.num_hidden_layers)]
+        )
+        self.gradient_checkpointing = False
+        self.num_attention_heads = config.num_attention_heads
+        self.register_buffer(
+            "alibi",
+            self.rebuild_alibi_tensor(size=config.max_position_embeddings),
+            persistent=False,
+        )
+
+    def rebuild_alibi_tensor(
+        self, size: int, device: Optional[Union[torch.device, str]] = None
+    ):
+        # Alibi
+        # Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
+        # In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
+        # of the logits, which makes the math work out *after* applying causal masking. If no causal masking
+        # will be applied, it is necessary to construct the diagonal mask.
+        n_heads = self.num_attention_heads
+
+        def _get_alibi_head_slopes(n_heads: int) -> List[float]:
+            def get_slopes_power_of_2(n):
+                start = 2 ** (-(2 ** -(math.log2(n) - 3)))
+                ratio = start
+                return [start * ratio**i for i in range(n)]
+
+            if math.log2(n_heads).is_integer():
+                return get_slopes_power_of_2(
+                    n_heads
+                )  # In the paper, we only train models that have 2^a heads for some a. This function has
+            else:  # some good properties that only occur when the input is a power of 2. To maintain that even
+                closest_power_of_2 = 2 ** math.floor(
+                    math.log2(n_heads)
+                )  # when the number of heads is not a power of 2, we use this workaround.
+                return (
+                    get_slopes_power_of_2(closest_power_of_2)
+                    + _get_alibi_head_slopes(2 * closest_power_of_2)[0::2][
+                        : n_heads - closest_power_of_2
+                    ]
+                )
+
+        context_position = torch.arange(size, device=device)[:, None]
+        memory_position = torch.arange(size, device=device)[None, :]
+        relative_position = torch.abs(memory_position - context_position)
+        # [n_heads, max_token_length, max_token_length]
+        relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
+        slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device) * -1
+        alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
+        # [1, n_heads, max_token_length, max_token_length]
+        alibi = alibi.unsqueeze(0)
+        assert alibi.shape == torch.Size([1, n_heads, size, size])
+
+        self._current_alibi_size = size
+        return alibi
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        head_mask: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        use_cache: Optional[bool] = None,
+        output_attentions: Optional[bool] = False,
+        output_hidden_states: Optional[bool] = False,
+        return_dict: Optional[bool] = True,
+    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+        all_hidden_states = () if output_hidden_states else None
+        all_self_attentions = () if output_attentions else None
+        all_cross_attentions = (
+            () if output_attentions and self.config.add_cross_attention else None
+        )
+
+        # Add alibi matrix to extended_attention_mask
+        _, seqlen, _ = hidden_states.size()
+        if self._current_alibi_size < seqlen:
+            # Rebuild the alibi tensor when needed
+            warnings.warn(
+                f'Increasing alibi size from {self._current_alibi_size} to {seqlen}.'
+            )
+            self.register_buffer(
+                "alibi",
+                self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device).to(
+                    hidden_states.dtype
+                ),
+                persistent=False,
+            )
+        elif self.alibi.device != hidden_states.device:
+            # Device catch-up
+            self.alibi = self.alibi.to(hidden_states.device)
+
+        alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
+        if self.gradient_checkpointing and self.training:
+            if use_cache:
+                logger.warning_once(
+                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+                )
+                use_cache = False
+
+        next_decoder_cache = () if use_cache else None
+        for i, layer_module in enumerate(self.layer):
+            if output_hidden_states:
+                all_hidden_states = all_hidden_states + (hidden_states,)
+
+            layer_head_mask = head_mask[i] if head_mask is not None else None
+            past_key_value = past_key_values[i] if past_key_values is not None else None
+
+            if self.gradient_checkpointing and self.training:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs, past_key_value, output_attentions)
+
+                    return custom_forward
+
+                layer_outputs = torch.utils.checkpoint.checkpoint(
+                    create_custom_forward(layer_module),
+                    hidden_states,
+                    attention_mask,
+                    layer_head_mask,
+                    encoder_hidden_states,
+                    encoder_attention_mask,
+                    alibi_bias,
+                )
+            else:
+                layer_outputs = layer_module(
+                    hidden_states,
+                    attention_mask,
+                    layer_head_mask,
+                    encoder_hidden_states,
+                    encoder_attention_mask,
+                    alibi_bias,
+                    past_key_value,
+                    output_attentions,
+                )
+
+            hidden_states = layer_outputs[0]
+            if use_cache:
+                next_decoder_cache += (layer_outputs[-1],)
+            if output_attentions:
+                all_self_attentions = all_self_attentions + (layer_outputs[1],)
+                if self.config.add_cross_attention:
+                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+        if output_hidden_states:
+            all_hidden_states = all_hidden_states + (hidden_states,)
+
+        if not return_dict:
+            return tuple(
+                v
+                for v in [
+                    hidden_states,
+                    next_decoder_cache,
+                    all_hidden_states,
+                    all_self_attentions,
+                    all_cross_attentions,
+                ]
+                if v is not None
+            )
+        return BaseModelOutputWithPastAndCrossAttentions(
+            last_hidden_state=hidden_states,
+            past_key_values=next_decoder_cache,
+            hidden_states=all_hidden_states,
+            attentions=all_self_attentions,
+            cross_attentions=all_cross_attentions,
+        )
+
+
+class JinaBertPooler(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+        self.activation = nn.Tanh()
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        # We "pool" the model by simply taking the hidden state corresponding
+        # to the first token.
+        first_token_tensor = hidden_states[:, 0]
+        pooled_output = self.dense(first_token_tensor)
+        pooled_output = self.activation(pooled_output)
+        return pooled_output
+
+
+class JinaBertPredictionHeadTransform(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+        if isinstance(config.hidden_act, str):
+            self.transform_act_fn = ACT2FN[config.hidden_act]
+        else:
+            self.transform_act_fn = config.hidden_act
+        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+        hidden_states = self.dense(hidden_states)
+        hidden_states = self.transform_act_fn(hidden_states)
+        hidden_states = self.LayerNorm(hidden_states)
+        return hidden_states
+
+
+class JinaBertLMPredictionHead(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.transform = JinaBertPredictionHeadTransform(config)
+
+        # The output weights are the same as the input embeddings, but there is
+        # an output-only bias for each token.
+        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+        self.decoder.bias = self.bias
+
+    def forward(self, hidden_states):
+        hidden_states = self.transform(hidden_states)
+        hidden_states = self.decoder(hidden_states)
+        return hidden_states
+
+
+class JinaBertOnlyMLMHead(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.predictions = JinaBertLMPredictionHead(config)
+
+    def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
+        prediction_scores = self.predictions(sequence_output)
+        return prediction_scores
+
+
+class JinaBertOnlyNSPHead(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+    def forward(self, pooled_output):
+        seq_relationship_score = self.seq_relationship(pooled_output)
+        return seq_relationship_score
+
+
+class JinaBertPreTrainingHeads(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.predictions = JinaBertLMPredictionHead(config)
+        self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+    def forward(self, sequence_output, pooled_output):
+        prediction_scores = self.predictions(sequence_output)
+        seq_relationship_score = self.seq_relationship(pooled_output)
+        return prediction_scores, seq_relationship_score
+
+
+class JinaBertPreTrainedModel(PreTrainedModel):
+    """
+    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+    models.
+    """
+
+    config_class = JinaBertConfig
+    load_tf_weights = load_tf_weights_in_bert
+    base_model_prefix = "bert"
+    supports_gradient_checkpointing = True
+    _no_split_modules = ["JinaBertLayer"]
+
+    def _init_weights(self, module):
+        """Initialize the weights"""
+        if isinstance(module, nn.Linear):
+            # Slightly different from the TF version which uses truncated_normal for initialization
+            # cf https://github.com/pytorch/pytorch/pull/5617
+            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+            if module.bias is not None:
+                module.bias.data.zero_()
+        elif isinstance(module, nn.Embedding):
+            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+            if module.padding_idx is not None:
+                module.weight.data[module.padding_idx].zero_()
+        elif isinstance(module, nn.LayerNorm):
+            module.bias.data.zero_()
+            module.weight.data.fill_(1.0)
+
+    def _set_gradient_checkpointing(self, module, value=False):
+        if isinstance(module, JinaBertEncoder):
+            module.gradient_checkpointing = value
+
+
+@dataclass
+class JinaBertForPreTrainingOutput(ModelOutput):
+    """
+    Output type of [`BertForPreTraining`].
+
+    Args:
+        loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+            Total loss as the sum of the masked language modeling loss and the next sequence prediction
+            (classification) loss.
+        prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+        seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
+            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
+            before SoftMax).
+        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+            shape `(batch_size, sequence_length, hidden_size)`.
+
+            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+            sequence_length)`.
+
+            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+            heads.
+    """
+
+    loss: Optional[torch.FloatTensor] = None
+    prediction_logits: torch.FloatTensor = None
+    seq_relationship_logits: torch.FloatTensor = None
+    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+    attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+BERT_START_DOCSTRING = r"""
+
+    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+    etc.)
+
+    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+    and behavior.
+
+    Parameters:
+        config ([`BertConfig`]): Model configuration class with all the parameters of the model.
+            Initializing with a config file does not load the weights associated with the model, only the
+            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BERT_INPUTS_DOCSTRING = r"""
+    Args:
+        input_ids (`torch.LongTensor` of shape `({0})`):
+            Indices of input sequence tokens in the vocabulary.
+
+            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+            [`PreTrainedTokenizer.__call__`] for details.
+
+            [What are input IDs?](../glossary#input-ids)
+        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+            - 1 for tokens that are **not masked**,
+            - 0 for tokens that are **masked**.
+
+            [What are attention masks?](../glossary#attention-mask)
+        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+            1]`:
+
+            - 0 corresponds to a *sentence A* token,
+            - 1 corresponds to a *sentence B* token.
+
+            [What are token type IDs?](../glossary#token-type-ids)
+        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+            config.max_position_embeddings - 1]`.
+
+            [What are position IDs?](../glossary#position-ids)
+        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+            - 1 indicates the head is **not masked**,
+            - 0 indicates the head is **masked**.
+
+        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+            model's internal embedding lookup matrix.
+        output_attentions (`bool`, *optional*):
+            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+            tensors for more detail.
+        output_hidden_states (`bool`, *optional*):
+            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+            more detail.
+        return_dict (`bool`, *optional*):
+            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+    "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
+    BERT_START_DOCSTRING,
+)
+class JinaBertModel(JinaBertPreTrainedModel):
+    """
+
+    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+    cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+    all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+    To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+    to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+    `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+    """
+
+    def __init__(self, config: JinaBertConfig, add_pooling_layer=True):
+        super().__init__(config)
+        self.config = config
+
+        self.emb_pooler = config.emb_pooler
+        self._name_or_path = config._name_or_path
+        if self.emb_pooler:
+            from transformers import AutoTokenizer
+
+            self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
+
+        self.embeddings = JinaBertEmbeddings(config)
+        self.encoder = JinaBertEncoder(config)
+
+        self.pooler = JinaBertPooler(config) if add_pooling_layer else None
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    @torch.inference_mode()
+    def encode(
+        self: 'JinaBertModel',
+        sentences: Union[str, List[str]],
+        batch_size: int = 32,
+        show_progress_bar: Optional[bool] = None,
+        output_value: str = 'sentence_embedding',
+        convert_to_numpy: bool = True,
+        convert_to_tensor: bool = False,
+        device: Optional[torch.device] = None,
+        normalize_embeddings: bool = False,
+        **tokenizer_kwargs,
+    ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
+        """
+        Computes sentence embeddings
+
+        Args:
+            sentences(`str` or `List[str]`):
+                Sentence or sentences to be encoded
+            batch_size(`int`, *optional*, defaults to 32):
+                Batch size for the computation
+            show_progress_bar(`bool`, *optional*, defaults to None):
+                Show a progress bar when encoding sentences.
+                If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
+            output_value(`str`, *optional*, defaults to 'sentence_embedding'):
+                Default sentence_embedding, to get sentence embeddings.
+                Can be set to token_embeddings to get wordpiece token embeddings.
+                Set to None, to get all output values
+            convert_to_numpy(`bool`, *optional*, defaults to True):
+                If true, the output is a list of numpy vectors.
+                Else, it is a list of pytorch tensors.
+            convert_to_tensor(`bool`, *optional*, defaults to False):
+                If true, you get one large tensor as return.
+                Overwrites any setting from convert_to_numpy
+            device(`torch.device`, *optional*, defaults to None):
+                Which torch.device to use for the computation
+            normalize_embeddings(`bool`, *optional*, defaults to False):
+                If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
+            tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
+                Keyword arguments for the tokenizer
+
+        Returns:
+            By default, a list of tensors is returned.
+            If convert_to_tensor, a stacked tensor is returned.
+            If convert_to_numpy, a numpy matrix is returned.
+        """
+        if not self.emb_pooler:
+            warnings.warn("No emb_pooler specified, defaulting to mean pooling.")
+            self.emb_pooler = 'mean'
+            from transformers import AutoTokenizer
+
+            self.tokenizer = AutoTokenizer.from_pretrained(self._name_or_path)
+        is_training = self.training
+        self.eval()
+
+        if show_progress_bar is None:
+            show_progress_bar = (
+                logger.getEffectiveLevel() == logging.INFO
+                or logger.getEffectiveLevel() == logging.DEBUG
+            )
+
+        if convert_to_tensor:
+            convert_to_numpy = False
+
+        if output_value != 'sentence_embedding':
+            convert_to_tensor = False
+            convert_to_numpy = False
+
+        input_was_string = False
+        if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
+            sentences = [sentences]
+            input_was_string = True
+
+        if device is not None:
+            self.to(device)
+
+        # TODO: Maybe use better length heuristic?
+        permutation = np.argsort([-len(i) for i in sentences])
+        inverse_permutation = np.argsort(permutation)
+        sentences = [sentences[idx] for idx in permutation]
+
+        tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
+        tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 8192)
+        tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
+
+        all_embeddings = []
+
+        if has_tqdm:
+            range_iter = trange(
+                0,
+                len(sentences),
+                batch_size,
+                desc="Encoding",
+                disable=not show_progress_bar,
+            )
+        else:
+            range_iter = range(0, len(sentences), batch_size)
+
+        for i in range_iter:
+            encoded_input = self.tokenizer(
+                sentences[i : i + batch_size],
+                return_tensors='pt',
+                **tokenizer_kwargs,
+            ).to(self.device)
+            token_embs = self.forward(**encoded_input)[0]
+
+            # Accumulate in fp32 to avoid overflow
+            token_embs = token_embs.float()
+
+            if output_value == 'token_embeddings':
+                raise NotImplementedError
+            elif output_value is None:
+                raise NotImplementedError
+            else:
+                embeddings = self.mean_pooling(
+                    token_embs, encoded_input['attention_mask']
+                )
+
+                if normalize_embeddings:
+                    embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
+
+                if convert_to_numpy:
+                    embeddings = embeddings.cpu()
+            all_embeddings.extend(embeddings)
+
+        all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
+
+        if convert_to_tensor:
+            all_embeddings = torch.stack(all_embeddings)
+        elif convert_to_numpy:
+            all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
+
+        if input_was_string:
+            all_embeddings = all_embeddings[0]
+
+        self.train(is_training)
+        return all_embeddings
+
+    def mean_pooling(
+        self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
+    ):
+        input_mask_expanded = (
+            attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
+        )
+        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
+            input_mask_expanded.sum(1), min=1e-9
+        )
+
+    def get_input_embeddings(self):
+        return self.embeddings.word_embeddings
+
+    def set_input_embeddings(self, value):
+        self.embeddings.word_embeddings = value
+
+    def _prune_heads(self, heads_to_prune):
+        """
+        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+        class PreTrainedModel
+        """
+        for layer, heads in heads_to_prune.items():
+            self.encoder.layer[layer].attention.prune_heads(heads)
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_DOC,
+        output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+        config_class=_CONFIG_FOR_DOC,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        encoder_hidden_states: Optional[torch.Tensor] = None,
+        encoder_attention_mask: Optional[torch.Tensor] = None,
+        past_key_values: Optional[List[torch.FloatTensor]] = None,
+        use_cache: Optional[bool] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+        r"""
+        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+            the model is configured as a decoder.
+        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+            - 1 for tokens that are **not masked**,
+            - 0 for tokens that are **masked**.
+        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+        use_cache (`bool`, *optional*):
+            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+            `past_key_values`).
+        """
+        output_attentions = (
+            output_attentions
+            if output_attentions is not None
+            else self.config.output_attentions
+        )
+        output_hidden_states = (
+            output_hidden_states
+            if output_hidden_states is not None
+            else self.config.output_hidden_states
+        )
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        if self.config.is_decoder:
+            use_cache = use_cache if use_cache is not None else self.config.use_cache
+        else:
+            use_cache = False
+
+        if input_ids is not None and inputs_embeds is not None:
+            raise ValueError(
+                "You cannot specify both input_ids and inputs_embeds at the same time"
+            )
+        elif input_ids is not None:
+            # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+            input_shape = input_ids.size()
+        elif inputs_embeds is not None:
+            input_shape = inputs_embeds.size()[:-1]
+        else:
+            raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+        batch_size, seq_length = input_shape
+        device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+        # past_key_values_length
+        past_key_values_length = (
+            past_key_values[0][0].shape[2] if past_key_values is not None else 0
+        )
+
+        if attention_mask is None:
+            attention_mask = torch.ones(
+                ((batch_size, seq_length + past_key_values_length)), device=device
+            )
+
+        if token_type_ids is None:
+            if hasattr(self.embeddings, "token_type_ids"):
+                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
+                    batch_size, seq_length
+                )
+                token_type_ids = buffered_token_type_ids_expanded
+            else:
+                token_type_ids = torch.zeros(
+                    input_shape, dtype=torch.long, device=device
+                )
+
+        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+        # ourselves in which case we just need to make it broadcastable to all heads.
+        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
+            attention_mask, input_shape
+        )
+
+        # If a 2D or 3D attention mask is provided for the cross-attention
+        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+        if self.config.is_decoder and encoder_hidden_states is not None:
+            (
+                encoder_batch_size,
+                encoder_sequence_length,
+                _,
+            ) = encoder_hidden_states.size()
+            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+            if encoder_attention_mask is None:
+                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+            encoder_extended_attention_mask = self.invert_attention_mask(
+                encoder_attention_mask
+            )
+        else:
+            encoder_extended_attention_mask = None
+
+        # Prepare head mask if needed
+        # 1.0 in head_mask indicate we keep the head
+        # attention_probs has shape bsz x n_heads x N x N
+        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+        embedding_output = self.embeddings(
+            input_ids=input_ids,
+            position_ids=position_ids,
+            token_type_ids=token_type_ids,
+            inputs_embeds=inputs_embeds,
+            past_key_values_length=past_key_values_length,
+        )
+        encoder_outputs = self.encoder(
+            embedding_output,
+            attention_mask=extended_attention_mask,
+            head_mask=head_mask,
+            encoder_hidden_states=encoder_hidden_states,
+            encoder_attention_mask=encoder_extended_attention_mask,
+            past_key_values=past_key_values,
+            use_cache=use_cache,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+        sequence_output = encoder_outputs[0]
+        pooled_output = (
+            self.pooler(sequence_output) if self.pooler is not None else None
+        )
+
+        if not return_dict:
+            return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+        return BaseModelOutputWithPoolingAndCrossAttentions(
+            last_hidden_state=sequence_output,
+            pooler_output=pooled_output,
+            past_key_values=encoder_outputs.past_key_values,
+            hidden_states=encoder_outputs.hidden_states,
+            attentions=encoder_outputs.attentions,
+            cross_attentions=encoder_outputs.cross_attentions,
+        )
+
+
+@add_start_docstrings(
+    """
+    Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
+    sentence prediction (classification)` head.
+    """,
+    BERT_START_DOCSTRING,
+)
+class JinaBertForPreTraining(JinaBertPreTrainedModel):
+    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+    def __init__(self, config):
+        super().__init__(config)
+
+        self.bert = JinaBertModel(config)
+        self.cls = JinaBertPreTrainingHeads(config)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_output_embeddings(self):
+        return self.cls.predictions.decoder
+
+    def set_output_embeddings(self, new_embeddings):
+        self.cls.predictions.decoder = new_embeddings
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @replace_return_docstrings(
+        output_type=JinaBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        next_sentence_label: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], JinaBertForPreTrainingOutput]:
+        r"""
+            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+                Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+                config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
+                the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+            next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+                Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
+                pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+                - 0 indicates sequence B is a continuation of sequence A,
+                - 1 indicates sequence B is a random sequence.
+            kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+                Used to hide legacy arguments that have been deprecated.
+
+        Returns:
+        """
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        sequence_output, pooled_output = outputs[:2]
+        prediction_scores, seq_relationship_score = self.cls(
+            sequence_output, pooled_output
+        )
+
+        total_loss = None
+        if labels is not None and next_sentence_label is not None:
+            loss_fct = CrossEntropyLoss()
+            masked_lm_loss = loss_fct(
+                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
+            )
+            next_sentence_loss = loss_fct(
+                seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)
+            )
+            total_loss = masked_lm_loss + next_sentence_loss
+
+        if not return_dict:
+            output = (prediction_scores, seq_relationship_score) + outputs[2:]
+            return ((total_loss,) + output) if total_loss is not None else output
+
+        return JinaBertForPreTrainingOutput(
+            loss=total_loss,
+            prediction_logits=prediction_scores,
+            seq_relationship_logits=seq_relationship_score,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+
+
+@add_start_docstrings(
+    """JinaBert Model with a `language modeling` head on top for CLM fine-tuning.""",
+    BERT_START_DOCSTRING,
+)
+class JinaBertLMHeadModel(JinaBertPreTrainedModel):
+    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+    def __init__(self, config):
+        super().__init__(config)
+
+        if not config.is_decoder:
+            logger.warning(
+                "If you want to use `JinaBertLMHeadModel` as a standalone, add `is_decoder=True.`"
+            )
+
+        self.bert = JinaBertModel(config, add_pooling_layer=False)
+        self.cls = JinaBertOnlyMLMHead(config)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_output_embeddings(self):
+        return self.cls.predictions.decoder
+
+    def set_output_embeddings(self, new_embeddings):
+        self.cls.predictions.decoder = new_embeddings
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_DOC,
+        output_type=CausalLMOutputWithCrossAttentions,
+        config_class=_CONFIG_FOR_DOC,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        encoder_hidden_states: Optional[torch.Tensor] = None,
+        encoder_attention_mask: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        past_key_values: Optional[List[torch.Tensor]] = None,
+        use_cache: Optional[bool] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
+        r"""
+        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+            the model is configured as a decoder.
+        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+            - 1 for tokens that are **not masked**,
+            - 0 for tokens that are **masked**.
+        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+            `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+            ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
+        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+        use_cache (`bool`, *optional*):
+            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+            `past_key_values`).
+        """
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+        if labels is not None:
+            use_cache = False
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            encoder_hidden_states=encoder_hidden_states,
+            encoder_attention_mask=encoder_attention_mask,
+            past_key_values=past_key_values,
+            use_cache=use_cache,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        sequence_output = outputs[0]
+        prediction_scores = self.cls(sequence_output)
+
+        lm_loss = None
+        if labels is not None:
+            # we are doing next-token prediction; shift prediction scores and input ids by one
+            shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+            labels = labels[:, 1:].contiguous()
+            loss_fct = CrossEntropyLoss()
+            lm_loss = loss_fct(
+                shifted_prediction_scores.view(-1, self.config.vocab_size),
+                labels.view(-1),
+            )
+
+        if not return_dict:
+            output = (prediction_scores,) + outputs[2:]
+            return ((lm_loss,) + output) if lm_loss is not None else output
+
+        return CausalLMOutputWithCrossAttentions(
+            loss=lm_loss,
+            logits=prediction_scores,
+            past_key_values=outputs.past_key_values,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+            cross_attentions=outputs.cross_attentions,
+        )
+
+    def prepare_inputs_for_generation(
+        self,
+        input_ids,
+        past_key_values=None,
+        attention_mask=None,
+        use_cache=True,
+        **model_kwargs,
+    ):
+        input_shape = input_ids.shape
+        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+        if attention_mask is None:
+            attention_mask = input_ids.new_ones(input_shape)
+
+        # cut decoder_input_ids if past_key_values is used
+        if past_key_values is not None:
+            input_ids = input_ids[:, -1:]
+
+        return {
+            "input_ids": input_ids,
+            "attention_mask": attention_mask,
+            "past_key_values": past_key_values,
+            "use_cache": use_cache,
+        }
+
+    def _reorder_cache(self, past_key_values, beam_idx):
+        reordered_past = ()
+        for layer_past in past_key_values:
+            reordered_past += (
+                tuple(
+                    past_state.index_select(0, beam_idx) for past_state in layer_past
+                ),
+            )
+        return reordered_past
+
+
+@add_start_docstrings(
+    """JinaBert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING
+)
+class JinaBertForMaskedLM(JinaBertPreTrainedModel):
+    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
+
+    def __init__(self, config):
+        super().__init__(config)
+
+        if config.is_decoder:
+            logger.warning(
+                "If you want to use `JinaBertForMaskedLM` make sure `config.is_decoder=False` for "
+                "bi-directional self-attention."
+            )
+
+        self.bert = JinaBertModel(config, add_pooling_layer=False)
+        self.cls = JinaBertOnlyMLMHead(config)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_output_embeddings(self):
+        return self.cls.predictions.decoder
+
+    def set_output_embeddings(self, new_embeddings):
+        self.cls.predictions.decoder = new_embeddings
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_DOC,
+        output_type=MaskedLMOutput,
+        config_class=_CONFIG_FOR_DOC,
+        expected_output="'paris'",
+        expected_loss=0.88,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        encoder_hidden_states: Optional[torch.Tensor] = None,
+        encoder_attention_mask: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+        """
+
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            encoder_hidden_states=encoder_hidden_states,
+            encoder_attention_mask=encoder_attention_mask,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        sequence_output = outputs[0]
+        prediction_scores = self.cls(sequence_output)
+
+        masked_lm_loss = None
+        if labels is not None:
+            loss_fct = CrossEntropyLoss()  # -100 index = padding token
+            masked_lm_loss = loss_fct(
+                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
+            )
+
+        if not return_dict:
+            output = (prediction_scores,) + outputs[2:]
+            return (
+                ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+            )
+
+        return MaskedLMOutput(
+            loss=masked_lm_loss,
+            logits=prediction_scores,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+
+    def prepare_inputs_for_generation(
+        self, input_ids, attention_mask=None, **model_kwargs
+    ):
+        input_shape = input_ids.shape
+        effective_batch_size = input_shape[0]
+
+        #  add a dummy token
+        if self.config.pad_token_id is None:
+            raise ValueError("The PAD token should be defined for generation")
+
+        attention_mask = torch.cat(
+            [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
+            dim=-1,
+        )
+        dummy_token = torch.full(
+            (effective_batch_size, 1),
+            self.config.pad_token_id,
+            dtype=torch.long,
+            device=input_ids.device,
+        )
+        input_ids = torch.cat([input_ids, dummy_token], dim=1)
+
+        return {"input_ids": input_ids, "attention_mask": attention_mask}
+
+
+@add_start_docstrings(
+    """JinaBert Model with a `next sentence prediction (classification)` head on top.""",
+    BERT_START_DOCSTRING,
+)
+class JinaBertForNextSentencePrediction(JinaBertPreTrainedModel):
+    def __init__(self, config):
+        super().__init__(config)
+
+        self.bert = JinaBertModel(config)
+        self.cls = JinaBertOnlyNSPHead(config)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @replace_return_docstrings(
+        output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+        **kwargs,
+    ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
+            (see `input_ids` docstring). Indices should be in `[0, 1]`:
+
+            - 0 indicates sequence B is a continuation of sequence A,
+            - 1 indicates sequence B is a random sequence.
+
+        Returns:
+        """
+
+        if "next_sentence_label" in kwargs:
+            warnings.warn(
+                "The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
+                " `labels` instead.",
+                FutureWarning,
+            )
+            labels = kwargs.pop("next_sentence_label")
+
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        pooled_output = outputs[1]
+
+        seq_relationship_scores = self.cls(pooled_output)
+
+        next_sentence_loss = None
+        if labels is not None:
+            loss_fct = CrossEntropyLoss()
+            next_sentence_loss = loss_fct(
+                seq_relationship_scores.view(-1, 2), labels.view(-1)
+            )
+
+        if not return_dict:
+            output = (seq_relationship_scores,) + outputs[2:]
+            return (
+                ((next_sentence_loss,) + output)
+                if next_sentence_loss is not None
+                else output
+            )
+
+        return NextSentencePredictorOutput(
+            loss=next_sentence_loss,
+            logits=seq_relationship_scores,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+
+
+@add_start_docstrings(
+    """
+    JinaBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+    output) e.g. for GLUE tasks.
+    """,
+    BERT_START_DOCSTRING,
+)
+class JinaBertForSequenceClassification(JinaBertPreTrainedModel):
+    def __init__(self, config):
+        super().__init__(config)
+        self.num_labels = config.num_labels
+        self.config = config
+
+        self.bert = JinaBertModel(config)
+        classifier_dropout = (
+            config.classifier_dropout
+            if config.classifier_dropout is not None
+            else config.hidden_dropout_prob
+        )
+        self.dropout = nn.Dropout(classifier_dropout)
+        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
+        output_type=SequenceClassifierOutput,
+        config_class=_CONFIG_FOR_DOC,
+        expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
+        expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+        """
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        pooled_output = outputs[1]
+
+        pooled_output = self.dropout(pooled_output)
+        logits = self.classifier(pooled_output)
+
+        loss = None
+        if labels is not None:
+            if self.config.problem_type is None:
+                if self.num_labels == 1:
+                    self.config.problem_type = "regression"
+                elif self.num_labels > 1 and (
+                    labels.dtype == torch.long or labels.dtype == torch.int
+                ):
+                    self.config.problem_type = "single_label_classification"
+                else:
+                    self.config.problem_type = "multi_label_classification"
+
+            if self.config.problem_type == "regression":
+                loss_fct = MSELoss()
+                if self.num_labels == 1:
+                    loss = loss_fct(logits.squeeze(), labels.squeeze())
+                else:
+                    loss = loss_fct(logits, labels)
+            elif self.config.problem_type == "single_label_classification":
+                loss_fct = CrossEntropyLoss()
+                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+            elif self.config.problem_type == "multi_label_classification":
+                loss_fct = BCEWithLogitsLoss()
+                loss = loss_fct(logits, labels)
+        if not return_dict:
+            output = (logits,) + outputs[2:]
+            return ((loss,) + output) if loss is not None else output
+
+        return SequenceClassifierOutput(
+            loss=loss,
+            logits=logits,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+
+
+@add_start_docstrings(
+    """
+    JinaBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
+    softmax) e.g. for RocStories/SWAG tasks.
+    """,
+    BERT_START_DOCSTRING,
+)
+class JinaBertForMultipleChoice(JinaBertPreTrainedModel):
+    def __init__(self, config):
+        super().__init__(config)
+
+        self.bert = JinaBertModel(config)
+        classifier_dropout = (
+            config.classifier_dropout
+            if config.classifier_dropout is not None
+            else config.hidden_dropout_prob
+        )
+        self.dropout = nn.Dropout(classifier_dropout)
+        self.classifier = nn.Linear(config.hidden_size, 1)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_DOC,
+        output_type=MultipleChoiceModelOutput,
+        config_class=_CONFIG_FOR_DOC,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
+            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
+            `input_ids` above)
+        """
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+        num_choices = (
+            input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
+        )
+
+        input_ids = (
+            input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
+        )
+        attention_mask = (
+            attention_mask.view(-1, attention_mask.size(-1))
+            if attention_mask is not None
+            else None
+        )
+        token_type_ids = (
+            token_type_ids.view(-1, token_type_ids.size(-1))
+            if token_type_ids is not None
+            else None
+        )
+        position_ids = (
+            position_ids.view(-1, position_ids.size(-1))
+            if position_ids is not None
+            else None
+        )
+        inputs_embeds = (
+            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
+            if inputs_embeds is not None
+            else None
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        pooled_output = outputs[1]
+
+        pooled_output = self.dropout(pooled_output)
+        logits = self.classifier(pooled_output)
+        reshaped_logits = logits.view(-1, num_choices)
+
+        loss = None
+        if labels is not None:
+            loss_fct = CrossEntropyLoss()
+            loss = loss_fct(reshaped_logits, labels)
+
+        if not return_dict:
+            output = (reshaped_logits,) + outputs[2:]
+            return ((loss,) + output) if loss is not None else output
+
+        return MultipleChoiceModelOutput(
+            loss=loss,
+            logits=reshaped_logits,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+
+
+@add_start_docstrings(
+    """
+    JinaBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+    Named-Entity-Recognition (NER) tasks.
+    """,
+    BERT_START_DOCSTRING,
+)
+class JinaBertForTokenClassification(JinaBertPreTrainedModel):
+    def __init__(self, config):
+        super().__init__(config)
+        self.num_labels = config.num_labels
+
+        self.bert = JinaBertModel(config, add_pooling_layer=False)
+        classifier_dropout = (
+            config.classifier_dropout
+            if config.classifier_dropout is not None
+            else config.hidden_dropout_prob
+        )
+        self.dropout = nn.Dropout(classifier_dropout)
+        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
+        output_type=TokenClassifierOutput,
+        config_class=_CONFIG_FOR_DOC,
+        expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
+        expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        labels: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+        """
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        sequence_output = outputs[0]
+
+        sequence_output = self.dropout(sequence_output)
+        logits = self.classifier(sequence_output)
+
+        loss = None
+        if labels is not None:
+            loss_fct = CrossEntropyLoss()
+            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+        if not return_dict:
+            output = (logits,) + outputs[2:]
+            return ((loss,) + output) if loss is not None else output
+
+        return TokenClassifierOutput(
+            loss=loss,
+            logits=logits,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+
+
+@add_start_docstrings(
+    """
+    JinaBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
+    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+    """,
+    BERT_START_DOCSTRING,
+)
+class JinaBertForQuestionAnswering(JinaBertPreTrainedModel):
+    def __init__(self, config):
+        super().__init__(config)
+        self.num_labels = config.num_labels
+
+        self.bert = JinaBertModel(config, add_pooling_layer=False)
+        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    @add_start_docstrings_to_model_forward(
+        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
+    )
+    @add_code_sample_docstrings(
+        checkpoint=_CHECKPOINT_FOR_QA,
+        output_type=QuestionAnsweringModelOutput,
+        config_class=_CONFIG_FOR_DOC,
+        qa_target_start_index=_QA_TARGET_START_INDEX,
+        qa_target_end_index=_QA_TARGET_END_INDEX,
+        expected_output=_QA_EXPECTED_OUTPUT,
+        expected_loss=_QA_EXPECTED_LOSS,
+    )
+    def forward(
+        self,
+        input_ids: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        token_type_ids: Optional[torch.Tensor] = None,
+        position_ids: Optional[torch.Tensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        inputs_embeds: Optional[torch.Tensor] = None,
+        start_positions: Optional[torch.Tensor] = None,
+        end_positions: Optional[torch.Tensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
+        r"""
+        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+            Labels for position (index) of the start of the labelled span for computing the token classification loss.
+            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+            are not taken into account for computing the loss.
+        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+            Labels for position (index) of the end of the labelled span for computing the token classification loss.
+            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+            are not taken into account for computing the loss.
+        """
+        return_dict = (
+            return_dict if return_dict is not None else self.config.use_return_dict
+        )
+
+        outputs = self.bert(
+            input_ids,
+            attention_mask=attention_mask,
+            token_type_ids=token_type_ids,
+            position_ids=position_ids,
+            head_mask=head_mask,
+            inputs_embeds=inputs_embeds,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+        )
+
+        sequence_output = outputs[0]
+
+        logits = self.qa_outputs(sequence_output)
+        start_logits, end_logits = logits.split(1, dim=-1)
+        start_logits = start_logits.squeeze(-1).contiguous()
+        end_logits = end_logits.squeeze(-1).contiguous()
+
+        total_loss = None
+        if start_positions is not None and end_positions is not None:
+            # If we are on multi-GPU, split add a dimension
+            if len(start_positions.size()) > 1:
+                start_positions = start_positions.squeeze(-1)
+            if len(end_positions.size()) > 1:
+                end_positions = end_positions.squeeze(-1)
+            # sometimes the start/end positions are outside our model inputs, we ignore these terms
+            ignored_index = start_logits.size(1)
+            start_positions = start_positions.clamp(0, ignored_index)
+            end_positions = end_positions.clamp(0, ignored_index)
+
+            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+            start_loss = loss_fct(start_logits, start_positions)
+            end_loss = loss_fct(end_logits, end_positions)
+            total_loss = (start_loss + end_loss) / 2
+
+        if not return_dict:
+            output = (start_logits, end_logits) + outputs[2:]
+            return ((total_loss,) + output) if total_loss is not None else output
+
+        return QuestionAnsweringModelOutput(
+            loss=total_loss,
+            start_logits=start_logits,
+            end_logits=end_logits,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+        )
+