File size: 3,506 Bytes
d16b67c 72db919 d16b67c 916f769 c7545a5 872e96e 12feda3 916f769 8baeb66 916f769 ee12fb0 916f769 d16b67c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language:
- en
base_model: stabilityai/stable-diffusion-2-inpainting
pipeline_tag: text-to-image
library_name: diffusers
---
# Anonymize Anyone: Toward Race Fairness in Text-to-Face Synthesis using Simple Preference Optimization in Diffusion Model
For detailed information, code, and documentation, please visit our GitHub repository:
[Anonymize-Anyone](https://github.com/fh2c1/Anonymize-Anyone)
## Anonymize Anyone

## Model

**Anonymize Anyone** presents a novel approach to text-to-face synthesis using a Diffusion Model that considers Race Fairness. Our method uses facial segmentation masks to edit specific facial regions, and employs a Stable Diffusion v2 Inpainting model trained on a curated Asian dataset. We introduce two key losses: **βπΉπΉπΈ** (Focused Feature Enhancement Loss) to enhance performance with limited data, and **βπ«π°ππ** (Difference Loss) to address catastrophic forgetting. Finally, we apply **Simple Preference Optimization** (SimPO) for refined and enhanced image generation.
## Model Checkpoints
- [Anonymize-Anyone (Inpainting model with **βπΉπΉπΈ** and **βπ«π°ππ**)](https://huggingface.co/fh2c1/Anonymize-Anyone)
- [SimPO-LoRA (Diffusion model with **Simple Preference Optimization**)](https://huggingface.co/fh2c1/SimPO-LoRA-1.2)
### Using with Diffusersπ§¨
You can use this model directly with the `diffusers` library:
```python
import torch
from PIL import Image
from diffusers import StableDiffusionInpaintPipeline
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
"fh2c1/Anonymize-Anyone",
torch_dtype=torch.float16,
safety_checker=None,
).to(device)
sd_pipe.load_lora_weights("fh2c1/SimPO-LoRA-1.2", adapter_name="SimPO")
sd_pipe.set_adapters(["SimPO"], adapter_weights=[0.5])
def generate_image(image_path, mask_path, prompt, negative_prompt, pipe, seed):
try:
in_image = Image.open(image_path)
in_mask = Image.open(mask_path)
except IOError as e:
print(f"Loading error: {e}")
return None
generator = torch.Generator(device).manual_seed(seed)
result = pipe(image=in_image, mask_image=in_mask, prompt=prompt,
negative_prompt=negative_prompt, generator=generator)
return result.images[0]
image = '/content/Anonymize-Anyone/data/2.png'
mask = "/content/Anonymize-Anyone/data/2_mask.png"
prompt = "he is an asian man."
seed = 38189219984105
negative_prompt = "low resolution, ugly, disfigured, ugly, bad, immature, cartoon, anime, 3d, painting, b&w, deformed eyes, low quailty, noise"
try:
generated_image = generate_image(image_path=image, mask_path=mask, prompt=prompt,
negative_prompt=negative_prompt, pipe=sd_pipe, seed=seed)
except TypeError as e:
print(f"TypeError : {e}")
generated_image
```

For more detailed usage instructions, including how to prepare segmentation masks and run inference, please refer to our [GitHub repository](https://github.com/fh2c1/Anonymize-Anyone).
## Training
For information on how to train the model, including the use of **βπΉπΉπΈ** (Focused Feature Enhancement Loss) and **βπ«π°ππ** (Difference Loss), please see our GitHub repository's [training section](https://github.com/fh2c1/Anonymize-Anyone#running_man-train). |