--- library_name: transformers language: - hi base_model: femursmith/intermediate-asr-ashanti-twi tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 1.2365226570157581 --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [femursmith/intermediate-asr-ashanti-twi](https://huggingface.co/femursmith/intermediate-asr-ashanti-twi) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0085 - Wer: 1.2365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0035 | 0.6707 | 1000 | 0.0085 | 1.2365 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3