Commit
·
1bd0fd9
1
Parent(s):
120b13a
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- pt
|
5 |
+
---
|
6 |
+
|
7 |
+
# BERTikal (aka `legalnlp-bert`)
|
8 |
+
|
9 |
+
BERTikal [1] is a cased BERT-base model for the Brazilian legal language and was trained from the BERTimbau's [2] checkpoint using Brazilian legal texts. More details on the datasets and training procedures can be found in [1].
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
|
13 |
+
```python
|
14 |
+
from transformers import AutoTokenizer # Or BertTokenizer
|
15 |
+
from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads
|
16 |
+
from transformers import AutoModel # or BertModel, for BERT without pretraining heads
|
17 |
+
|
18 |
+
model = AutoModelForPreTraining.from_pretrained('felipemaiapolo/legalnlp-bert')
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained('felipemaiapolo/legalnlp-bert', do_lower_case=False)
|
20 |
+
```
|
21 |
+
|
22 |
+
### Ex. extracting BERT embeddings
|
23 |
+
|
24 |
+
```python
|
25 |
+
import torch
|
26 |
+
|
27 |
+
model = AutoModel.from_pretrained('felipemaiapolo/legalnlp-bert')
|
28 |
+
input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt')
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
outs = model(input_ids)
|
32 |
+
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
|
33 |
+
|
34 |
+
# encoded.shape: (8, 768)
|
35 |
+
# tensor([[-0.0398, -0.3057, 0.2431, ..., -0.5420, 0.1857, -0.5775],
|
36 |
+
# [-0.2926, -0.1957, 0.7020, ..., -0.2843, 0.0530, -0.4304],
|
37 |
+
# [ 0.2463, -0.1467, 0.5496, ..., 0.3781, -0.2325, -0.5469],
|
38 |
+
# ...,
|
39 |
+
# [ 0.0662, 0.7817, 0.3486, ..., -0.4131, -0.2852, -0.2819],
|
40 |
+
# [ 0.0662, 0.2845, 0.1871, ..., -0.2542, -0.2933, -0.0661],
|
41 |
+
# [ 0.2761, -0.1657, 0.3288, ..., -0.2102, 0.0029, -0.2009]])
|
42 |
+
```
|
43 |
+
# Cite
|
44 |
+
|
45 |
+
Polo, Felipe Maia, et al. "LegalNLP-Natural Language Processing methods for the Brazilian Legal Language." Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional. SBC, 2021.
|
46 |
+
|
47 |
+
@inproceedings{polo2021legalnlp,
|
48 |
+
title={LegalNLP-Natural Language Processing methods for the Brazilian Legal Language},
|
49 |
+
author={Polo, Felipe Maia and Mendon{\c{c}}a, Gabriel Caiaffa Floriano and Parreira, Kau{\^e} Capellato J and Gianvechio, Lucka and Cordeiro, Peterson and Ferreira, Jonathan Batista and de Lima, Leticia Maria Paz and do Amaral Maia, Ant{\^o}nio Carlos and Vicente, Renato},
|
50 |
+
booktitle={Anais do XVIII Encontro Nacional de Intelig{\^e}ncia Artificial e Computacional},
|
51 |
+
pages={763--774},
|
52 |
+
year={2021},
|
53 |
+
organization={SBC}
|
54 |
+
}
|
55 |
+
|
56 |
+
# References
|
57 |
+
|
58 |
+
[1] Polo, Felipe Maia, et al. "LegalNLP-Natural Language Processing methods for the Brazilian Legal Language." Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional. SBC, 2021.
|
59 |
+
|
60 |
+
[2] Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: pretrained BERT
|
61 |
+
models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent
|
62 |
+
Systems, BRACIS, Rio Grande do Sul, Brazil, October 20-23
|