|
""" Activations |
|
|
|
A collection of activations fn and modules with a common interface so that they can |
|
easily be swapped. All have an `inplace` arg even if not used. |
|
|
|
Copyright 2020 Ross Wightman |
|
""" |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
def swish(x, inplace: bool = False): |
|
"""Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3) |
|
and also as Swish (https://arxiv.org/abs/1710.05941). |
|
|
|
TODO Rename to SiLU with addition to PyTorch |
|
""" |
|
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) |
|
|
|
|
|
class Swish(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Swish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return swish(x, self.inplace) |
|
|
|
|
|
def mish(x, inplace: bool = False): |
|
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 |
|
""" |
|
return x.mul(F.softplus(x).tanh()) |
|
|
|
|
|
class Mish(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Mish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return mish(x, self.inplace) |
|
|
|
|
|
def sigmoid(x, inplace: bool = False): |
|
return x.sigmoid_() if inplace else x.sigmoid() |
|
|
|
|
|
|
|
class Sigmoid(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Sigmoid, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return x.sigmoid_() if self.inplace else x.sigmoid() |
|
|
|
|
|
def tanh(x, inplace: bool = False): |
|
return x.tanh_() if inplace else x.tanh() |
|
|
|
|
|
|
|
class Tanh(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(Tanh, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return x.tanh_() if self.inplace else x.tanh() |
|
|
|
|
|
def hard_swish(x, inplace: bool = False): |
|
inner = F.relu6(x + 3.).div_(6.) |
|
return x.mul_(inner) if inplace else x.mul(inner) |
|
|
|
|
|
class HardSwish(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardSwish, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return hard_swish(x, self.inplace) |
|
|
|
|
|
def hard_sigmoid(x, inplace: bool = False): |
|
if inplace: |
|
return x.add_(3.).clamp_(0., 6.).div_(6.) |
|
else: |
|
return F.relu6(x + 3.) / 6. |
|
|
|
|
|
class HardSigmoid(nn.Module): |
|
def __init__(self, inplace: bool = False): |
|
super(HardSigmoid, self).__init__() |
|
self.inplace = inplace |
|
|
|
def forward(self, x): |
|
return hard_sigmoid(x, self.inplace) |
|
|
|
|
|
|