|
import base64 |
|
import math |
|
import re |
|
from io import BytesIO |
|
|
|
import matplotlib.cm |
|
import numpy as np |
|
import torch |
|
import torch.nn |
|
from PIL import Image |
|
|
|
|
|
class RunningAverage: |
|
def __init__(self): |
|
self.avg = 0 |
|
self.count = 0 |
|
|
|
def append(self, value): |
|
self.avg = (value + self.count * self.avg) / (self.count + 1) |
|
self.count += 1 |
|
|
|
def get_value(self): |
|
return self.avg |
|
|
|
|
|
def denormalize(x, device='cpu'): |
|
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) |
|
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) |
|
return x * std + mean |
|
|
|
|
|
class RunningAverageDict: |
|
def __init__(self): |
|
self._dict = None |
|
|
|
def update(self, new_dict): |
|
if self._dict is None: |
|
self._dict = dict() |
|
for key, value in new_dict.items(): |
|
self._dict[key] = RunningAverage() |
|
|
|
for key, value in new_dict.items(): |
|
self._dict[key].append(value) |
|
|
|
def get_value(self): |
|
return {key: value.get_value() for key, value in self._dict.items()} |
|
|
|
|
|
def colorize(value, vmin=10, vmax=1000, cmap='magma_r'): |
|
value = value.cpu().numpy()[0, :, :] |
|
invalid_mask = value == -1 |
|
|
|
|
|
vmin = value.min() if vmin is None else vmin |
|
vmax = value.max() if vmax is None else vmax |
|
if vmin != vmax: |
|
value = (value - vmin) / (vmax - vmin) |
|
else: |
|
|
|
value = value * 0. |
|
|
|
|
|
cmapper = matplotlib.cm.get_cmap(cmap) |
|
value = cmapper(value, bytes=True) |
|
value[invalid_mask] = 255 |
|
img = value[:, :, :3] |
|
|
|
|
|
return img |
|
|
|
|
|
def count_parameters(model): |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
def compute_errors(gt, pred): |
|
thresh = np.maximum((gt / pred), (pred / gt)) |
|
a1 = (thresh < 1.25).mean() |
|
a2 = (thresh < 1.25 ** 2).mean() |
|
a3 = (thresh < 1.25 ** 3).mean() |
|
|
|
abs_rel = np.mean(np.abs(gt - pred) / gt) |
|
sq_rel = np.mean(((gt - pred) ** 2) / gt) |
|
|
|
rmse = (gt - pred) ** 2 |
|
rmse = np.sqrt(rmse.mean()) |
|
|
|
rmse_log = (np.log(gt) - np.log(pred)) ** 2 |
|
rmse_log = np.sqrt(rmse_log.mean()) |
|
|
|
err = np.log(pred) - np.log(gt) |
|
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100 |
|
|
|
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean() |
|
return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log, |
|
silog=silog, sq_rel=sq_rel) |
|
|
|
|
|
|
|
def b64_to_pil(b64string): |
|
image_data = re.sub('^data:image/.+;base64,', '', b64string) |
|
|
|
return Image.open(BytesIO(base64.b64decode(image_data))) |
|
|
|
|
|
|
|
from scipy import ndimage |
|
|
|
|
|
def edges(d): |
|
dx = ndimage.sobel(d, 0) |
|
dy = ndimage.sobel(d, 1) |
|
return np.abs(dx) + np.abs(dy) |
|
|
|
|
|
class PointCloudHelper(): |
|
def __init__(self, width=640, height=480): |
|
self.xx, self.yy = self.worldCoords(width, height) |
|
|
|
def worldCoords(self, width=640, height=480): |
|
hfov_degrees, vfov_degrees = 57, 43 |
|
hFov = math.radians(hfov_degrees) |
|
vFov = math.radians(vfov_degrees) |
|
cx, cy = width / 2, height / 2 |
|
fx = width / (2 * math.tan(hFov / 2)) |
|
fy = height / (2 * math.tan(vFov / 2)) |
|
xx, yy = np.tile(range(width), height), np.repeat(range(height), width) |
|
xx = (xx - cx) / fx |
|
yy = (yy - cy) / fy |
|
return xx, yy |
|
|
|
def depth_to_points(self, depth): |
|
depth[edges(depth) > 0.3] = np.nan |
|
length = depth.shape[0] * depth.shape[1] |
|
|
|
z = depth.reshape(length) |
|
|
|
return np.dstack((self.xx * z, self.yy * z, z)).reshape((length, 3)) |
|
|
|
|
|
|