|
""" MobileNet-V3 |
|
|
|
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. |
|
|
|
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .activations import get_act_fn, get_act_layer, HardSwish |
|
from .config import layer_config_kwargs |
|
from .conv2d_layers import select_conv2d |
|
from .helpers import load_pretrained |
|
from .efficientnet_builder import * |
|
|
|
__all__ = ['mobilenetv3_rw', 'mobilenetv3_large_075', 'mobilenetv3_large_100', 'mobilenetv3_large_minimal_100', |
|
'mobilenetv3_small_075', 'mobilenetv3_small_100', 'mobilenetv3_small_minimal_100', |
|
'tf_mobilenetv3_large_075', 'tf_mobilenetv3_large_100', 'tf_mobilenetv3_large_minimal_100', |
|
'tf_mobilenetv3_small_075', 'tf_mobilenetv3_small_100', 'tf_mobilenetv3_small_minimal_100'] |
|
|
|
model_urls = { |
|
'mobilenetv3_rw': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', |
|
'mobilenetv3_large_075': None, |
|
'mobilenetv3_large_100': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', |
|
'mobilenetv3_large_minimal_100': None, |
|
'mobilenetv3_small_075': None, |
|
'mobilenetv3_small_100': None, |
|
'mobilenetv3_small_minimal_100': None, |
|
'tf_mobilenetv3_large_075': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', |
|
'tf_mobilenetv3_large_100': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', |
|
'tf_mobilenetv3_large_minimal_100': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', |
|
'tf_mobilenetv3_small_075': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', |
|
'tf_mobilenetv3_small_100': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', |
|
'tf_mobilenetv3_small_minimal_100': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', |
|
} |
|
|
|
|
|
class MobileNetV3(nn.Module): |
|
""" MobileNet-V3 |
|
|
|
A this model utilizes the MobileNet-v3 specific 'efficient head', where global pooling is done before the |
|
head convolution without a final batch-norm layer before the classifier. |
|
|
|
Paper: https://arxiv.org/abs/1905.02244 |
|
""" |
|
|
|
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, |
|
channel_multiplier=1.0, pad_type='', act_layer=HardSwish, drop_rate=0., drop_connect_rate=0., |
|
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'): |
|
super(MobileNetV3, self).__init__() |
|
self.drop_rate = drop_rate |
|
|
|
stem_size = round_channels(stem_size, channel_multiplier) |
|
self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) |
|
self.bn1 = nn.BatchNorm2d(stem_size, **norm_kwargs) |
|
self.act1 = act_layer(inplace=True) |
|
in_chs = stem_size |
|
|
|
builder = EfficientNetBuilder( |
|
channel_multiplier, pad_type=pad_type, act_layer=act_layer, se_kwargs=se_kwargs, |
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, drop_connect_rate=drop_connect_rate) |
|
self.blocks = nn.Sequential(*builder(in_chs, block_args)) |
|
in_chs = builder.in_chs |
|
|
|
self.global_pool = nn.AdaptiveAvgPool2d(1) |
|
self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type, bias=head_bias) |
|
self.act2 = act_layer(inplace=True) |
|
self.classifier = nn.Linear(num_features, num_classes) |
|
|
|
for m in self.modules(): |
|
if weight_init == 'goog': |
|
initialize_weight_goog(m) |
|
else: |
|
initialize_weight_default(m) |
|
|
|
def as_sequential(self): |
|
layers = [self.conv_stem, self.bn1, self.act1] |
|
layers.extend(self.blocks) |
|
layers.extend([ |
|
self.global_pool, self.conv_head, self.act2, |
|
nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) |
|
return nn.Sequential(*layers) |
|
|
|
def features(self, x): |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
x = self.blocks(x) |
|
x = self.global_pool(x) |
|
x = self.conv_head(x) |
|
x = self.act2(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = x.flatten(1) |
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
return self.classifier(x) |
|
|
|
|
|
def _create_model(model_kwargs, variant, pretrained=False): |
|
as_sequential = model_kwargs.pop('as_sequential', False) |
|
model = MobileNetV3(**model_kwargs) |
|
if pretrained and model_urls[variant]: |
|
load_pretrained(model, model_urls[variant]) |
|
if as_sequential: |
|
model = model.as_sequential() |
|
return model |
|
|
|
|
|
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a MobileNet-V3 model (RW variant). |
|
|
|
Paper: https://arxiv.org/abs/1905.02244 |
|
|
|
This was my first attempt at reproducing the MobileNet-V3 from paper alone. It came close to the |
|
eventual Tensorflow reference impl but has a few differences: |
|
1. This model has no bias on the head convolution |
|
2. This model forces no residual (noskip) on the first DWS block, this is different than MnasNet |
|
3. This model always uses ReLU for the SE activation layer, other models in the family inherit their act layer |
|
from their parent block |
|
4. This model does not enforce divisible by 8 limitation on the SE reduction channel count |
|
|
|
Overall the changes are fairly minor and result in a very small parameter count difference and no |
|
top-1/5 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16_nre_noskip'], |
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], |
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25_nre'], |
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], |
|
|
|
['cn_r1_k1_s1_c960'], |
|
] |
|
with layer_config_kwargs(kwargs): |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
head_bias=False, |
|
channel_multiplier=channel_multiplier, |
|
act_layer=resolve_act_layer(kwargs, 'hard_swish'), |
|
se_kwargs=dict(gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True), |
|
norm_kwargs=resolve_bn_args(kwargs), |
|
**kwargs, |
|
) |
|
model = _create_model(model_kwargs, variant, pretrained) |
|
return model |
|
|
|
|
|
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a MobileNet-V3 large/small/minimal models. |
|
|
|
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py |
|
Paper: https://arxiv.org/abs/1905.02244 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
if 'small' in variant: |
|
num_features = 1024 |
|
if 'minimal' in variant: |
|
act_layer = 'relu' |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s2_e1_c16'], |
|
|
|
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], |
|
|
|
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], |
|
|
|
['ir_r2_k3_s1_e3_c48'], |
|
|
|
['ir_r3_k3_s2_e6_c96'], |
|
|
|
['cn_r1_k1_s1_c576'], |
|
] |
|
else: |
|
act_layer = 'hard_swish' |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s2_e1_c16_se0.25_nre'], |
|
|
|
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], |
|
|
|
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], |
|
|
|
['ir_r2_k5_s1_e3_c48_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c96_se0.25'], |
|
|
|
['cn_r1_k1_s1_c576'], |
|
] |
|
else: |
|
num_features = 1280 |
|
if 'minimal' in variant: |
|
act_layer = 'relu' |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16'], |
|
|
|
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], |
|
|
|
['ir_r3_k3_s2_e3_c40'], |
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112'], |
|
|
|
['ir_r3_k3_s2_e6_c160'], |
|
|
|
['cn_r1_k1_s1_c960'], |
|
] |
|
else: |
|
act_layer = 'hard_swish' |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16_nre'], |
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], |
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25_nre'], |
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], |
|
|
|
['cn_r1_k1_s1_c960'], |
|
] |
|
with layer_config_kwargs(kwargs): |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
num_features=num_features, |
|
stem_size=16, |
|
channel_multiplier=channel_multiplier, |
|
act_layer=resolve_act_layer(kwargs, act_layer), |
|
se_kwargs=dict( |
|
act_layer=get_act_layer('relu'), gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True, divisor=8), |
|
norm_kwargs=resolve_bn_args(kwargs), |
|
**kwargs, |
|
) |
|
model = _create_model(model_kwargs, variant, pretrained) |
|
return model |
|
|
|
|
|
def mobilenetv3_rw(pretrained=False, **kwargs): |
|
""" MobileNet-V3 RW |
|
Attn: See note in gen function for this variant. |
|
""" |
|
|
|
if pretrained: |
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def mobilenetv3_large_075(pretrained=False, **kwargs): |
|
""" MobileNet V3 Large 0.75""" |
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def mobilenetv3_large_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Large 1.0 """ |
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def mobilenetv3_large_minimal_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Large (Minimalistic) 1.0 """ |
|
|
|
model = _gen_mobilenet_v3('mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def mobilenetv3_small_075(pretrained=False, **kwargs): |
|
""" MobileNet V3 Small 0.75 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def mobilenetv3_small_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Small 1.0 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def mobilenetv3_small_minimal_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Small (Minimalistic) 1.0 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def tf_mobilenetv3_large_075(pretrained=False, **kwargs): |
|
""" MobileNet V3 Large 0.75. Tensorflow compat variant. """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def tf_mobilenetv3_large_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Large 1.0. Tensorflow compat variant. """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Large Minimalistic 1.0. Tensorflow compat variant. """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def tf_mobilenetv3_small_075(pretrained=False, **kwargs): |
|
""" MobileNet V3 Small 0.75. Tensorflow compat variant. """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def tf_mobilenetv3_small_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Small 1.0. Tensorflow compat variant.""" |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs): |
|
""" MobileNet V3 Small Minimalistic 1.0. Tensorflow compat variant. """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|