File size: 20,998 Bytes
074c857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# %%
# !! {"metadata":{
# !!   "id": "ByGXyiHZWM_q"
# !! }}
"""
# **Deforum Stable Diffusion v0.6**
[Stable Diffusion](https://github.com/CompVis/stable-diffusion) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer and the [Stability.ai](https://stability.ai/) Team. [K Diffusion](https://github.com/crowsonkb/k-diffusion) by [Katherine Crowson](https://twitter.com/RiversHaveWings).

[Quick Guide](https://docs.google.com/document/d/1RrQv7FntzOuLg4ohjRZPVL7iptIyBhwwbcEYEW2OfcI/edit?usp=sharing) to Deforum v0.6

Notebook by [deforum](https://discord.gg/upmXXsrwZc)
"""

# %%
# !! {"metadata":{
# !!   "cellView": "form",
# !!   "id": "IJjzzkKlWM_s"
# !! }}
#@markdown **NVIDIA GPU**
import subprocess, os, sys
sub_p_res = subprocess.run(['nvidia-smi', '--query-gpu=name,memory.total,memory.free', '--format=csv,noheader'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(f"{sub_p_res[:-1]}")

# %%
# !! {"metadata":{
# !!   "id": "UA8-efH-WM_t"
# !! }}
"""
# Setup
"""

# %%
# !! {"metadata":{
# !!   "cellView": "form",
# !!   "id": "0D2HQO-PWM_t"
# !! }}

import subprocess, time, gc, os, sys

def setup_environment():
    print_subprocess = False
    use_xformers_for_colab = True
    try:
        ipy = get_ipython()
    except:
        ipy = 'could not get_ipython'
    if 'google.colab' in str(ipy):
        print("..setting up environment")
        start_time = time.time()
        all_process = [
            ['pip', 'install', 'torch==1.12.1+cu113', 'torchvision==0.13.1+cu113', '--extra-index-url', 'https://download.pytorch.org/whl/cu113'],
            ['pip', 'install', 'omegaconf==2.2.3', 'einops==0.4.1', 'pytorch-lightning==1.7.4', 'torchmetrics==0.9.3', 'torchtext==0.13.1', 'transformers==4.21.2', 'kornia==0.6.7'],
            ['git', 'clone', 'https://github.com/deforum-art/deforum-stable-diffusion'],
            ['pip', 'install', 'accelerate', 'ftfy', 'jsonmerge', 'matplotlib', 'resize-right', 'timm', 'torchdiffeq','scikit-learn'],
        ]
        for process in all_process:
            running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
            if print_subprocess:
                print(running)
        with open('deforum-stable-diffusion/src/k_diffusion/__init__.py', 'w') as f:
            f.write('')
        sys.path.extend([
            'deforum-stable-diffusion/',
            'deforum-stable-diffusion/src',
        ])
        end_time = time.time()

        if use_xformers_for_colab:

            print("..installing xformers")

            all_process = [['pip', 'install', 'triton==2.0.0.dev20220701']]
            for process in all_process:
                running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
                if print_subprocess:
                    print(running)
                    
            v_card_name = subprocess.run(['nvidia-smi', '--query-gpu=name', '--format=csv,noheader'], stdout=subprocess.PIPE).stdout.decode('utf-8')
            if 't4' in v_card_name.lower():
                name_to_download = 'T4'
            elif 'v100' in v_card_name.lower():
                name_to_download = 'V100'
            elif 'a100' in v_card_name.lower():
                name_to_download = 'A100'
            elif 'p100' in v_card_name.lower():
                name_to_download = 'P100'
            else:
                print(v_card_name + ' is currently not supported with xformers flash attention in deforum!')

            x_ver = 'xformers-0.0.13.dev0-py3-none-any.whl'
            x_link = 'https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/' + name_to_download + '/' + x_ver
        
            all_process = [
                ['wget', x_link],
                ['pip', 'install', x_ver],
                ['mv', 'deforum-stable-diffusion/src/ldm/modules/attention.py', 'deforum-stable-diffusion/src/ldm/modules/attention_backup.py'],
                ['mv', 'deforum-stable-diffusion/src/ldm/modules/attention_xformers.py', 'deforum-stable-diffusion/src/ldm/modules/attention.py']
            ]

            for process in all_process:
                running = subprocess.run(process,stdout=subprocess.PIPE).stdout.decode('utf-8')
                if print_subprocess:
                    print(running)

            print(f"Environment set up in {end_time-start_time:.0f} seconds")
    else:
        sys.path.extend([
            'src'
        ])
    return

setup_environment()

import torch
import random
import clip
from IPython import display
from types import SimpleNamespace
from helpers.save_images import get_output_folder
from helpers.settings import load_args
from helpers.render import render_animation, render_input_video, render_image_batch, render_interpolation
from helpers.model_load import make_linear_decode, load_model, get_model_output_paths
from helpers.aesthetics import load_aesthetics_model

#@markdown **Path Setup**

def Root():
    models_path = "models" #@param {type:"string"}
    configs_path = "configs" #@param {type:"string"}
    output_path = "output" #@param {type:"string"}
    mount_google_drive = True #@param {type:"boolean"}
    models_path_gdrive = "/content/drive/MyDrive/AI/models" #@param {type:"string"}
    output_path_gdrive = "/content/drive/MyDrive/AI/StableDiffusion" #@param {type:"string"}

    #@markdown **Model Setup**
    model_config = "v1-inference.yaml" #@param ["custom","v1-inference.yaml"]
    model_checkpoint =  "v1-5-pruned-emaonly.ckpt" #@param ["custom","v1-5-pruned.ckpt","v1-5-pruned-emaonly.ckpt","sd-v1-4-full-ema.ckpt","sd-v1-4.ckpt","sd-v1-3-full-ema.ckpt","sd-v1-3.ckpt","sd-v1-2-full-ema.ckpt","sd-v1-2.ckpt","sd-v1-1-full-ema.ckpt","sd-v1-1.ckpt", "robo-diffusion-v1.ckpt","wd-v1-3-float16.ckpt"]
    custom_config_path = "" #@param {type:"string"}
    custom_checkpoint_path = "" #@param {type:"string"}
    half_precision = True
    return locals()

root = Root()
root = SimpleNamespace(**root)

root.models_path, root.output_path = get_model_output_paths(root)
root.model, root.device = load_model(root, 
                                    load_on_run_all=True
                                    , 
                                    check_sha256=True
                                    )

# %%
# !! {"metadata":{
# !!   "id": "6JxwhBwtWM_t"
# !! }}
"""
# Settings
"""

# %%
# !! {"metadata":{
# !!   "cellView": "form",
# !!   "id": "E0tJVYA4WM_u"
# !! }}
def DeforumAnimArgs():

    #@markdown ####**Animation:**
    animation_mode = 'None' #@param ['None', '2D', '3D', 'Video Input', 'Interpolation'] {type:'string'}
    max_frames = 1000 #@param {type:"number"}
    border = 'replicate' #@param ['wrap', 'replicate'] {type:'string'}

    #@markdown ####**Motion Parameters:**
    angle = "0:(0)"#@param {type:"string"}
    zoom = "0:(1.04)"#@param {type:"string"}
    translation_x = "0:(10*sin(2*3.14*t/10))"#@param {type:"string"}
    translation_y = "0:(0)"#@param {type:"string"}
    translation_z = "0:(10)"#@param {type:"string"}
    rotation_3d_x = "0:(0)"#@param {type:"string"}
    rotation_3d_y = "0:(0)"#@param {type:"string"}
    rotation_3d_z = "0:(0)"#@param {type:"string"}
    flip_2d_perspective = False #@param {type:"boolean"}
    perspective_flip_theta = "0:(0)"#@param {type:"string"}
    perspective_flip_phi = "0:(t%15)"#@param {type:"string"}
    perspective_flip_gamma = "0:(0)"#@param {type:"string"}
    perspective_flip_fv = "0:(53)"#@param {type:"string"}
    noise_schedule = "0: (0.02)"#@param {type:"string"}
    strength_schedule = "0: (0.65)"#@param {type:"string"}
    contrast_schedule = "0: (1.0)"#@param {type:"string"}

    #@markdown ####**Coherence:**
    color_coherence = 'Match Frame 0 LAB' #@param ['None', 'Match Frame 0 HSV', 'Match Frame 0 LAB', 'Match Frame 0 RGB'] {type:'string'}
    diffusion_cadence = '1' #@param ['1','2','3','4','5','6','7','8'] {type:'string'}

    #@markdown ####**3D Depth Warping:**
    use_depth_warping = True #@param {type:"boolean"}
    midas_weight = 0.3#@param {type:"number"}
    near_plane = 200
    far_plane = 10000
    fov = 40#@param {type:"number"}
    padding_mode = 'border'#@param ['border', 'reflection', 'zeros'] {type:'string'}
    sampling_mode = 'bicubic'#@param ['bicubic', 'bilinear', 'nearest'] {type:'string'}
    save_depth_maps = False #@param {type:"boolean"}

    #@markdown ####**Video Input:**
    video_init_path ='/content/video_in.mp4'#@param {type:"string"}
    extract_nth_frame = 1#@param {type:"number"}
    overwrite_extracted_frames = True #@param {type:"boolean"}
    use_mask_video = False #@param {type:"boolean"}
    video_mask_path ='/content/video_in.mp4'#@param {type:"string"}

    #@markdown ####**Interpolation:**
    interpolate_key_frames = False #@param {type:"boolean"}
    interpolate_x_frames = 4 #@param {type:"number"}
    
    #@markdown ####**Resume Animation:**
    resume_from_timestring = False #@param {type:"boolean"}
    resume_timestring = "20220829210106" #@param {type:"string"}

    return locals()

# %%
# !! {"metadata":{
# !!   "id": "i9fly1RIWM_u"
# !! }}
prompts = [
    "a beautiful lake by Asher Brown Durand, trending on Artstation", # the first prompt I want
    "a beautiful portrait of a woman by Artgerm, trending on Artstation", # the second prompt I want
    #"this prompt I don't want it I commented it out",
    #"a nousr robot, trending on Artstation", # use "nousr robot" with the robot diffusion model (see model_checkpoint setting)
    #"touhou 1girl komeiji_koishi portrait, green hair", # waifu diffusion prompts can use danbooru tag groups (see model_checkpoint)
    #"this prompt has weights if prompt weighting enabled:2 can also do negative:-2", # (see prompt_weighting)
]

animation_prompts = {
    0: "a beautiful apple, trending on Artstation",
    20: "a beautiful banana, trending on Artstation",
    30: "a beautiful coconut, trending on Artstation",
    40: "a beautiful durian, trending on Artstation",
}

# %%
# !! {"metadata":{
# !!   "cellView": "form",
# !!   "id": "XVzhbmizWM_u"
# !! }}
#@markdown **Load Settings**
override_settings_with_file = False #@param {type:"boolean"}
settings_file = "custom" #@param ["custom", "512x512_aesthetic_0.json","512x512_aesthetic_1.json","512x512_colormatch_0.json","512x512_colormatch_1.json","512x512_colormatch_2.json","512x512_colormatch_3.json"]
custom_settings_file = "/content/drive/MyDrive/Settings.txt"#@param {type:"string"}

def DeforumArgs():
    #@markdown **Image Settings**
    W = 512 #@param
    H = 512 #@param
    W, H = map(lambda x: x - x % 64, (W, H))  # resize to integer multiple of 64

    #@markdown **Sampling Settings**
    seed = -1 #@param
    sampler = 'dpmpp_2s_a' #@param ["klms","dpm2","dpm2_ancestral","heun","euler","euler_ancestral","plms", "ddim", "dpm_fast", "dpm_adaptive", "dpmpp_2s_a", "dpmpp_2m"]
    steps = 80 #@param
    scale = 7 #@param
    ddim_eta = 0.0 #@param
    dynamic_threshold = None
    static_threshold = None   

    #@markdown **Save & Display Settings**
    save_samples = True #@param {type:"boolean"}
    save_settings = True #@param {type:"boolean"}
    display_samples = True #@param {type:"boolean"}
    save_sample_per_step = False #@param {type:"boolean"}
    show_sample_per_step = False #@param {type:"boolean"}

    #@markdown **Prompt Settings**
    prompt_weighting = True #@param {type:"boolean"}
    normalize_prompt_weights = True #@param {type:"boolean"}
    log_weighted_subprompts = False #@param {type:"boolean"}

    #@markdown **Batch Settings**
    n_batch = 1 #@param
    batch_name = "StableFun" #@param {type:"string"}
    filename_format = "{timestring}_{index}_{prompt}.png" #@param ["{timestring}_{index}_{seed}.png","{timestring}_{index}_{prompt}.png"]
    seed_behavior = "iter" #@param ["iter","fixed","random"]
    make_grid = False #@param {type:"boolean"}
    grid_rows = 2 #@param 
    outdir = get_output_folder(root.output_path, batch_name)

    #@markdown **Init Settings**
    use_init = False #@param {type:"boolean"}
    strength = 0.0 #@param {type:"number"}
    strength_0_no_init = True # Set the strength to 0 automatically when no init image is used
    init_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}
    # Whiter areas of the mask are areas that change more
    use_mask = False #@param {type:"boolean"}
    use_alpha_as_mask = False # use the alpha channel of the init image as the mask
    mask_file = "https://www.filterforge.com/wiki/images/archive/b/b7/20080927223728%21Polygonal_gradient_thumb.jpg" #@param {type:"string"}
    invert_mask = False #@param {type:"boolean"}
    # Adjust mask image, 1.0 is no adjustment. Should be positive numbers.
    mask_brightness_adjust = 1.0  #@param {type:"number"}
    mask_contrast_adjust = 1.0  #@param {type:"number"}
    # Overlay the masked image at the end of the generation so it does not get degraded by encoding and decoding
    overlay_mask = True  # {type:"boolean"}
    # Blur edges of final overlay mask, if used. Minimum = 0 (no blur)
    mask_overlay_blur = 5 # {type:"number"}

    #@markdown **Exposure/Contrast Conditional Settings**
    mean_scale = 0 #@param {type:"number"}
    var_scale = 0 #@param {type:"number"}
    exposure_scale = 0 #@param {type:"number"}
    exposure_target = 0.5 #@param {type:"number"}

    #@markdown **Color Match Conditional Settings**
    colormatch_scale = 0 #@param {type:"number"}
    colormatch_image = "https://www.saasdesign.io/wp-content/uploads/2021/02/palette-3-min-980x588.png" #@param {type:"string"}
    colormatch_n_colors = 4 #@param {type:"number"}
    ignore_sat_weight = 0 #@param {type:"number"}

    #@markdown **CLIP\Aesthetics Conditional Settings**
    clip_name = 'ViT-L/14' #@param ['ViT-L/14', 'ViT-L/14@336px', 'ViT-B/16', 'ViT-B/32']
    clip_scale = 0 #@param {type:"number"}
    aesthetics_scale = 0 #@param {type:"number"}
    cutn = 1 #@param {type:"number"}
    cut_pow = 0.0001 #@param {type:"number"}

    #@markdown **Other Conditional Settings**
    init_mse_scale = 0 #@param {type:"number"}
    init_mse_image = "https://cdn.pixabay.com/photo/2022/07/30/13/10/green-longhorn-beetle-7353749_1280.jpg" #@param {type:"string"}

    blue_scale = 0 #@param {type:"number"}
    
    #@markdown **Conditional Gradient Settings**
    gradient_wrt = 'x0_pred' #@param ["x", "x0_pred"]
    gradient_add_to = 'both' #@param ["cond", "uncond", "both"]
    decode_method = 'linear' #@param ["autoencoder","linear"]
    grad_threshold_type = 'dynamic' #@param ["dynamic", "static", "mean", "schedule"]
    clamp_grad_threshold = 0.2 #@param {type:"number"}
    clamp_start = 0.2 #@param
    clamp_stop = 0.01 #@param
    grad_inject_timing = list(range(1,10)) #@param

    #@markdown **Speed vs VRAM Settings**
    cond_uncond_sync = True #@param {type:"boolean"}

    n_samples = 1 # doesnt do anything
    precision = 'autocast' 
    C = 4
    f = 8

    prompt = ""
    timestring = ""
    init_latent = None
    init_sample = None
    init_sample_raw = None
    mask_sample = None
    init_c = None

    return locals()

args_dict = DeforumArgs()
anim_args_dict = DeforumAnimArgs()

if override_settings_with_file:
    load_args(args_dict, anim_args_dict, settings_file, custom_settings_file, verbose=False)

args = SimpleNamespace(**args_dict)
anim_args = SimpleNamespace(**anim_args_dict)

args.timestring = time.strftime('%Y%m%d%H%M%S')
args.strength = max(0.0, min(1.0, args.strength))

# Load clip model if using clip guidance
if (args.clip_scale > 0) or (args.aesthetics_scale > 0):
    root.clip_model = clip.load(args.clip_name, jit=False)[0].eval().requires_grad_(False).to(root.device)
    if (args.aesthetics_scale > 0):
        root.aesthetics_model = load_aesthetics_model(args, root)

if args.seed == -1:
    args.seed = random.randint(0, 2**32 - 1)
if not args.use_init:
    args.init_image = None
if args.sampler == 'plms' and (args.use_init or anim_args.animation_mode != 'None'):
    print(f"Init images aren't supported with PLMS yet, switching to KLMS")
    args.sampler = 'klms'
if args.sampler != 'ddim':
    args.ddim_eta = 0

if anim_args.animation_mode == 'None':
    anim_args.max_frames = 1
elif anim_args.animation_mode == 'Video Input':
    args.use_init = True

# clean up unused memory
gc.collect()
torch.cuda.empty_cache()

# dispatch to appropriate renderer
if anim_args.animation_mode == '2D' or anim_args.animation_mode == '3D':
    render_animation(args, anim_args, animation_prompts, root)
elif anim_args.animation_mode == 'Video Input':
    render_input_video(args, anim_args, animation_prompts, root)
elif anim_args.animation_mode == 'Interpolation':
    render_interpolation(args, anim_args, animation_prompts, root)
else:
    render_image_batch(args, prompts, root)

# %%
# !! {"metadata":{
# !!   "id": "gJ88kZ2-WM_v"
# !! }}
"""
# Create Video From Frames
"""

# %%
# !! {"metadata":{
# !!   "cellView": "form",
# !!   "id": "XQGeqaGAWM_v"
# !! }}
skip_video_for_run_all = True #@param {type: 'boolean'}
fps = 12 #@param {type:"number"}
#@markdown **Manual Settings**
use_manual_settings = False #@param {type:"boolean"}
image_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939_%05d.png" #@param {type:"string"}
mp4_path = "/content/drive/MyDrive/AI/StableDiffusion/2022-09/20220903000939.mp4" #@param {type:"string"}
render_steps = False  #@param {type: 'boolean'}
path_name_modifier = "x0_pred" #@param ["x0_pred","x"]
make_gif = False

if skip_video_for_run_all == True:
    print('Skipping video creation, uncheck skip_video_for_run_all if you want to run it')
else:
    import os
    import subprocess
    from base64 import b64encode

    print(f"{image_path} -> {mp4_path}")

    if use_manual_settings:
        max_frames = "200" #@param {type:"string"}
    else:
        if render_steps: # render steps from a single image
            fname = f"{path_name_modifier}_%05d.png"
            all_step_dirs = [os.path.join(args.outdir, d) for d in os.listdir(args.outdir) if os.path.isdir(os.path.join(args.outdir,d))]
            newest_dir = max(all_step_dirs, key=os.path.getmtime)
            image_path = os.path.join(newest_dir, fname)
            print(f"Reading images from {image_path}")
            mp4_path = os.path.join(newest_dir, f"{args.timestring}_{path_name_modifier}.mp4")
            max_frames = str(args.steps)
        else: # render images for a video
            image_path = os.path.join(args.outdir, f"{args.timestring}_%05d.png")
            mp4_path = os.path.join(args.outdir, f"{args.timestring}.mp4")
            max_frames = str(anim_args.max_frames)

    # make video
    cmd = [
        'ffmpeg',
        '-y',
        '-vcodec', 'png',
        '-r', str(fps),
        '-start_number', str(0),
        '-i', image_path,
        '-frames:v', max_frames,
        '-c:v', 'libx264',
        '-vf',
        f'fps={fps}',
        '-pix_fmt', 'yuv420p',
        '-crf', '17',
        '-preset', 'veryfast',
        '-pattern_type', 'sequence',
        mp4_path
    ]
    process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    stdout, stderr = process.communicate()
    if process.returncode != 0:
        print(stderr)
        raise RuntimeError(stderr)

    mp4 = open(mp4_path,'rb').read()
    data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
    display.display(display.HTML(f'<video controls loop><source src="{data_url}" type="video/mp4"></video>') )
    
    if make_gif:
         gif_path = os.path.splitext(mp4_path)[0]+'.gif'
         cmd_gif = [
             'ffmpeg',
             '-y',
             '-i', mp4_path,
             '-r', str(fps),
             gif_path
         ]
         process_gif = subprocess.Popen(cmd_gif, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

# %%
# !! {"metadata":{
# !!   "cellView": "form",
# !!   "id": "MMpAcyrYWM_v"
# !! }}
skip_disconnect_for_run_all = True #@param {type: 'boolean'}

if skip_disconnect_for_run_all == True:
    print('Skipping disconnect, uncheck skip_disconnect_for_run_all if you want to run it')
else:
    from google.colab import runtime
    runtime.unassign()

# %%
# !! {"main_metadata":{
# !!   "kernelspec": {
# !!     "display_name": "Python 3.10.6 ('dsd')",
# !!     "language": "python",
# !!     "name": "python3"
# !!   },
# !!   "language_info": {
# !!     "codemirror_mode": {
# !!       "name": "ipython",
# !!       "version": 3
# !!     },
# !!     "file_extension": ".py",
# !!     "mimetype": "text/x-python",
# !!     "name": "python",
# !!     "nbconvert_exporter": "python",
# !!     "pygments_lexer": "ipython3",
# !!     "version": "3.10.6"
# !!   },
# !!   "orig_nbformat": 4,
# !!   "vscode": {
# !!     "interpreter": {
# !!       "hash": "b7e04c8a9537645cbc77fa0cbde8069bc94e341b0d5ced104651213865b24e58"
# !!     }
# !!   },
# !!   "colab": {
# !!     "provenance": []
# !!   },
# !!   "accelerator": "GPU",
# !!   "gpuClass": "standard"
# !! }}