Upload FineTuning.ipynb
Browse files- FineTuning.ipynb +341 -0
FineTuning.ipynb
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "57b52683-2ad6-4670-a36a-a5cd7d3ca00d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# Based on: <https://www.datacamp.com/tutorial/fine-tuning-llama-2>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "77796674-8a83-4ce1-b275-0f681591a647",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import os\n",
|
21 |
+
"import time\n",
|
22 |
+
"import torch\n",
|
23 |
+
"from datasets import load_dataset\n",
|
24 |
+
"from transformers import (\n",
|
25 |
+
" AutoModelForCausalLM,\n",
|
26 |
+
" AutoTokenizer,\n",
|
27 |
+
" BitsAndBytesConfig,\n",
|
28 |
+
" TrainingArguments,\n",
|
29 |
+
" pipeline,\n",
|
30 |
+
" logging,\n",
|
31 |
+
")\n",
|
32 |
+
"from peft import LoraConfig\n",
|
33 |
+
"from trl import SFTTrainer"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "c7cb8b2e-6019-4872-8ba1-99242354b761",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"# Model from Hugging Face hub\n",
|
44 |
+
"base_model = \"failspy/Phi-3-mini-128k-instruct-abliterated-v3\"\n",
|
45 |
+
"\n",
|
46 |
+
"# New instruction dataset\n",
|
47 |
+
"instruct_dataset = \"NobodyExistsOnTheInternet/ToxicQAFinal\"\n",
|
48 |
+
"\n",
|
49 |
+
"# Fine-tuned model\n",
|
50 |
+
"new_model = \"Ophiuchus-mini-128k-v0.1\""
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "a1aefbfc-215e-41b8-b3fa-b0c5db62ebd0",
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"dataset = load_dataset(instruct_dataset, split=\"train\")"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"id": "dcf420d2-5bd7-4049-ba06-3ba5ff90ddd2",
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"compute_dtype = getattr(torch, \"float16\")\n",
|
71 |
+
"\n",
|
72 |
+
"quant_config = BitsAndBytesConfig(\n",
|
73 |
+
" load_in_4bit=True,\n",
|
74 |
+
" bnb_4bit_quant_type=\"fp4\",\n",
|
75 |
+
" bnb_4bit_compute_dtype=compute_dtype,\n",
|
76 |
+
" bnb_4bit_use_double_quant=False,\n",
|
77 |
+
")"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"id": "5a5ab3dc-68aa-41e7-b724-6c4e0544beca",
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
88 |
+
" base_model,\n",
|
89 |
+
" quantization_config=quant_config,\n",
|
90 |
+
" device_map={\"\": 0}\n",
|
91 |
+
")\n",
|
92 |
+
"model.config.use_cache = False\n",
|
93 |
+
"model.config.pretraining_tp = 1"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": null,
|
99 |
+
"id": "5db8846f-0af4-4f04-8fa6-273656de4397",
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)\n",
|
104 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
105 |
+
"tokenizer.padding_side = \"right\""
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"id": "e7ab69cb-1f99-46e3-a17b-e33565d11679",
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"peft_params = LoraConfig(\n",
|
116 |
+
" lora_alpha=64,\n",
|
117 |
+
" lora_dropout=0.05,\n",
|
118 |
+
" r=128,\n",
|
119 |
+
" bias=\"none\",\n",
|
120 |
+
" task_type=\"CAUSAL_LM\",\n",
|
121 |
+
" target_modules=\"all-linear\"\n",
|
122 |
+
")"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"id": "e6bf2e24-a15e-4568-b76d-43541c6bdeae",
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"training_params = TrainingArguments(\n",
|
133 |
+
" output_dir=\"./mnt/ft_results\", # change this accordingly\n",
|
134 |
+
" num_train_epochs=1,\n",
|
135 |
+
" per_device_train_batch_size=1,\n",
|
136 |
+
" gradient_accumulation_steps=4,\n",
|
137 |
+
" optim=\"adamw_bnb_8bit\",\n",
|
138 |
+
" save_steps=25,\n",
|
139 |
+
" logging_steps=25,\n",
|
140 |
+
" learning_rate=2e-4,\n",
|
141 |
+
" weight_decay=0.001,\n",
|
142 |
+
" fp16=False,\n",
|
143 |
+
" bf16=False,\n",
|
144 |
+
" max_grad_norm=0.3,\n",
|
145 |
+
" max_steps=-1,\n",
|
146 |
+
" warmup_ratio=0.03,\n",
|
147 |
+
" group_by_length=True,\n",
|
148 |
+
" lr_scheduler_type=\"constant\",\n",
|
149 |
+
" report_to=\"tensorboard\",\n",
|
150 |
+
")"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": null,
|
156 |
+
"id": "c4e2a9a1-db0f-46ff-b477-aae422badada",
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"def formatting_prompts_func(example):\n",
|
161 |
+
" output_texts = []\n",
|
162 |
+
" for conv in example['conversations']:\n",
|
163 |
+
" ## For Llama-3:\n",
|
164 |
+
" #text = f\"\"\"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n{conv[0]['value']}<|eot_id|><|start_header_id|>user<|end_header_id|>\\n{conv[1]['value']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n{conv[2]['value']}<|eot_id|>\"\"\"\n",
|
165 |
+
" ## For WizardLM-2:\n",
|
166 |
+
" #text = f\"\"\"{conv[0]['value']} USER: {conv[1]['value']} ASSISTANT: {conv[2]['value']}</s>\"\"\"\n",
|
167 |
+
" ## For Phi-3:\n",
|
168 |
+
" #text = f\"\"\"<|system|>\\n{conv[0]['value']}<|end|>\\n<|user|>\\n{conv[1]['value']}<|end|>\\n<|assistant|>\\n{conv[2]['value']}<|end|>\"\"\"\n",
|
169 |
+
"\n",
|
170 |
+
" output_texts.append(text)\n",
|
171 |
+
" return output_texts"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": null,
|
177 |
+
"id": "1c9dc3f1-999e-4a16-a29a-1752c08306d3",
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [],
|
180 |
+
"source": [
|
181 |
+
"trainer = SFTTrainer(\n",
|
182 |
+
" model=model,\n",
|
183 |
+
" train_dataset=dataset,\n",
|
184 |
+
" peft_config=peft_params,\n",
|
185 |
+
" max_seq_length=None,\n",
|
186 |
+
" tokenizer=tokenizer,\n",
|
187 |
+
" args=training_params,\n",
|
188 |
+
" packing=False,\n",
|
189 |
+
" formatting_func=formatting_prompts_func\n",
|
190 |
+
")"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": null,
|
196 |
+
"id": "86d66c37-b963-42cb-afa1-f3999ae0216d",
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"trainer.train()"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": null,
|
206 |
+
"id": "49f3eff6-4795-4b44-b506-cd49ec068986",
|
207 |
+
"metadata": {},
|
208 |
+
"outputs": [],
|
209 |
+
"source": [
|
210 |
+
"trainer.model.save_pretrained(new_model)"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"id": "519f6339-101a-4015-96b2-c1b54f8e1fa7",
|
217 |
+
"metadata": {},
|
218 |
+
"outputs": [],
|
219 |
+
"source": [
|
220 |
+
"trainer.tokenizer.save_pretrained(new_model)"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": null,
|
226 |
+
"id": "257095fb-f597-4a90-ac88-f44443d7af29",
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"def create_message_template(user_message):\n",
|
231 |
+
" ## For Llama-3:\n",
|
232 |
+
" #return f\"\"\"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\\n{user_message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\"\"\"\n",
|
233 |
+
" ## For WizardLM-2:\n",
|
234 |
+
" #return f\"\"\"USER: {user_message} ASSISTANT:\"\"\"\n",
|
235 |
+
" ## For Phi-3:\n",
|
236 |
+
" #return f\"\"\"<|user|>\\n{user_message}<|end|>\\n<|assistant|>\\n\"\"\""
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": null,
|
242 |
+
"id": "63cb7f11-0fd1-46b7-bca7-a3fb55aa3669",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [],
|
245 |
+
"source": [
|
246 |
+
"prompt = \"Ask something here.\"\n",
|
247 |
+
"\n",
|
248 |
+
"messages = create_message_template(prompt)\n",
|
249 |
+
"\n",
|
250 |
+
"messages"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"id": "103d75b9-9ed5-4724-a1e0-2026cd7e08fd",
|
257 |
+
"metadata": {},
|
258 |
+
"outputs": [],
|
259 |
+
"source": [
|
260 |
+
"pipe = pipeline(task=\"text-generation\", model=model, tokenizer=tokenizer, max_length=4000)\n",
|
261 |
+
"result = pipe(messages)\n",
|
262 |
+
"print(result[0]['generated_text'])"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"id": "ea3dbc94-1e9a-4f37-b7a2-7378c15442a3",
|
269 |
+
"metadata": {},
|
270 |
+
"outputs": [],
|
271 |
+
"source": [
|
272 |
+
"from huggingface_hub import login\n",
|
273 |
+
"from huggingface_hub import HfApi\n",
|
274 |
+
"\n",
|
275 |
+
"login()\n",
|
276 |
+
"api = HfApi()"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": null,
|
282 |
+
"id": "8b172584-478b-479e-ba95-e5071f6ffc40",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"trainer.model.push_to_hub(\"fearlessdots/Ophiuchus-mini-128k-v0.1-LoRA\")"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": null,
|
292 |
+
"id": "b8a7901a-53cc-4c0b-90ba-2f19f1abe7ac",
|
293 |
+
"metadata": {},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"def upload_files(path):\n",
|
297 |
+
" api.upload_file(\n",
|
298 |
+
" path_or_fileobj=path,\n",
|
299 |
+
" repo_id=\"fearlessdots/Ophiuchus-mini-128k-v0.1-LoRA\",\n",
|
300 |
+
" path_in_repo=f\"{path.split('/')[-1]}\",\n",
|
301 |
+
" repo_type=\"model\"\n",
|
302 |
+
" )"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": null,
|
308 |
+
"id": "ee851d0c-9968-43f7-9b5a-ed14b4dc0066",
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": [
|
312 |
+
"# Upload files to LoRA repo\n",
|
313 |
+
"upload_files(\"/home/ubuntu/Llama-3-8B-Alpha-Centauri-v0.1/tokenizer_config.json\")\n",
|
314 |
+
"upload_files(\"/home/ubuntu/Llama-3-8B-Alpha-Centauri-v0.1/tokenizer.json\")\n",
|
315 |
+
"upload_files(\"/home/ubuntu/Llama-3-8B-Alpha-Centauri-v0.1/tokenizer.model\") # Only for models that contain this file. Llama-3 does not.\n",
|
316 |
+
"upload_files(\"/home/ubuntu/Llama-3-8B-Alpha-Centauri-v0.1/special_tokens_map.json\")"
|
317 |
+
]
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"metadata": {
|
321 |
+
"kernelspec": {
|
322 |
+
"display_name": "Python 3 (ipykernel)",
|
323 |
+
"language": "python",
|
324 |
+
"name": "python3"
|
325 |
+
},
|
326 |
+
"language_info": {
|
327 |
+
"codemirror_mode": {
|
328 |
+
"name": "ipython",
|
329 |
+
"version": 3
|
330 |
+
},
|
331 |
+
"file_extension": ".py",
|
332 |
+
"mimetype": "text/x-python",
|
333 |
+
"name": "python",
|
334 |
+
"nbconvert_exporter": "python",
|
335 |
+
"pygments_lexer": "ipython3",
|
336 |
+
"version": "3.10.12"
|
337 |
+
}
|
338 |
+
},
|
339 |
+
"nbformat": 4,
|
340 |
+
"nbformat_minor": 5
|
341 |
+
}
|