Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 237.10 +/- 11.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f55cfa27670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f55cfa27700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f55cfa27790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f55cfa27820>", "_build": "<function ActorCriticPolicy._build at 0x7f55cfa278b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f55cfa27940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f55cfa279d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f55cfa27a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f55cfa27af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f55cfa27b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f55cfa27c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f55cfa27ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f55cfa20960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673604839259596220, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoxhD1ck0W6/X6fOSlnkTRMQgq6tqO8uAAAgD8AAIA/QOuNvR1phD7yU649AMJXvtifGLwKfZq9AAAAAAAAAABgslC+VtBfP3ie/b3Afai+Y5ChvWNZsTwAAAAAAAAAADOzVjwpEC66g+vdOmkH3DXX3Yq7YfMCugAAgD8AAIA/mqmfOlzjT7oMl0C6k+m+tZ3ZsDouCGM5AACAPwAAgD9mBjO7e8qNugBmI7y3zro2fXKUujjQKbYAAIA/AACAPwBbtzzDCXG65sNkutUgD7Vx+q+6n3+DOQAAgD8AAIA/miFovCkAFLpK+XS7QqBhNun4rziUgYw6AACAPwAAgD+atVE8e0SPugtvvbndjY62iVYHO/6p3DgAAIA/AACAPxP3DT7CpPA+NuxWvlkwjL5u5R695UfiugAAAAAAAAAAJlTkPcDvlj+Otkw+jH1Pvn7eaD63ACE+AAAAAAAAAABmX5M8KRA0uuoFbzmrfig0Gu2XumbqirgAAIA/AACAPwCkjLwpSCC6UowPvB+UbTZp2Ku7kBfWtQAAgD8AAIA/M7+VPHvykrrw5Fg6yRpANb0zVLpWVXu5AACAPwAAgD8zC388KQw1ujVDijqmzoQ1CQMQOz4OorkAAIA/AACAPwD7rbx7uIS6xfdgOmSrGTUQI2q7JzCAuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvVErTN8YWkCUhpRSlIwBbJRN6AOMAXSUR0CRuVW8h9srdX2UKGgGaAloD0MINjrnpziuAMCUhpRSlGgVTRkBaBZHQJG7bzDn/1h1fZQoaAZoCWgPQwhJLZRMzmNhQJSGlFKUaBVN6ANoFkdAkb9DMibDuXV9lChoBmgJaA9DCF34wfnU5UNAlIaUUpRoFUv+aBZHQJHGPK+zt1J1fZQoaAZoCWgPQwi2niEcsyFfQJSGlFKUaBVN6ANoFkdAkcbb0aqCH3V9lChoBmgJaA9DCD9uv3wyyGNAlIaUUpRoFU3oA2gWR0CRxx1PWQOndX2UKGgGaAloD0MIR+S7lDoGYUCUhpRSlGgVTegDaBZHQJHHuGWUr091fZQoaAZoCWgPQwhRu18F+HNgQJSGlFKUaBVN6ANoFkdAkcqeR1X/53V9lChoBmgJaA9DCJM2VfdIIWNAlIaUUpRoFU3oA2gWR0CR0WaPjn3ddX2UKGgGaAloD0MIdENTdnrEY0CUhpRSlGgVTegDaBZHQJHgBQLux8l1fZQoaAZoCWgPQwikchO1NEFdQJSGlFKUaBVN6ANoFkdAkf1dUsFt9HV9lChoBmgJaA9DCIlBYOVQjGVAlIaUUpRoFU3oA2gWR0CSAZEfDDTCdX2UKGgGaAloD0MIYvTcQldbaUCUhpRSlGgVTegDaBZHQJIC6O+7Dl51fZQoaAZoCWgPQwje40wTtgxkQJSGlFKUaBVN6ANoFkdAkga7hrFfiXV9lChoBmgJaA9DCKn7AKS2InFAlIaUUpRoFU1dA2gWR0CSBvgv114gdX2UKGgGaAloD0MIJZLoZRSBYkCUhpRSlGgVTegDaBZHQJIIK4y44Id1fZQoaAZoCWgPQwgc6+I2ml1hQJSGlFKUaBVN6ANoFkdAkgn2GIsRQXV9lChoBmgJaA9DCIj1Rq0wlGFAlIaUUpRoFU3oA2gWR0CSEGBYFJQMdX2UKGgGaAloD0MIri6nBMRpYkCUhpRSlGgVTegDaBZHQJIUHk7wKBx1fZQoaAZoCWgPQwjcLckBu95lQJSGlFKUaBVN6ANoFkdAkhrRW912aHV9lChoBmgJaA9DCMHEH0Wd815AlIaUUpRoFU3oA2gWR0CSG1rJKaoddX2UKGgGaAloD0MIGvuSjYfiY0CUhpRSlGgVTegDaBZHQJIbl5u63Ap1fZQoaAZoCWgPQwj3zf3V4+VgQJSGlFKUaBVN6ANoFkdAkhwSp71Iy3V9lChoBmgJaA9DCGa9GMqJiV9AlIaUUpRoFU3oA2gWR0CSHrMbFS88dX2UKGgGaAloD0MIHD9UGjEBZ0CUhpRSlGgVTegDaBZHQJIkrUc4o7V1fZQoaAZoCWgPQwhWEW4yKkFhQJSGlFKUaBVN6ANoFkdAkjHH+MqBmXV9lChoBmgJaA9DCLK5ap4jF2VAlIaUUpRoFU3oA2gWR0CSTQyxiXpodX2UKGgGaAloD0MI5IdKI+a4YkCUhpRSlGgVTegDaBZHQJJP2yE+Pil1fZQoaAZoCWgPQwj4F0FjpqZjQJSGlFKUaBVN6ANoFkdAklCxm03OwHV9lChoBmgJaA9DCBh5WRML72RAlIaUUpRoFU3oA2gWR0CSU2UG3WnTdX2UKGgGaAloD0MIk6ZB0Tx4Y0CUhpRSlGgVTegDaBZHQJJTnfcer+51fZQoaAZoCWgPQwi0sKcdfuVlQJSGlFKUaBVN6ANoFkdAklTOXiR4hXV9lChoBmgJaA9DCA9Dq5OzW2JAlIaUUpRoFU3oA2gWR0CSVpD0UXYUdX2UKGgGaAloD0MI3CvzVt08ZECUhpRSlGgVTegDaBZHQJJcv/ACW/t1fZQoaAZoCWgPQwgvUigLX91nQJSGlFKUaBVN6ANoFkdAkmCzzND+i3V9lChoBmgJaA9DCETDYtS14jxAlIaUUpRoFUv7aBZHQJJg0m/nGKh1fZQoaAZoCWgPQwjoL/SI0SJmQJSGlFKUaBVN6ANoFkdAkmc1N1yNoHV9lChoBmgJaA9DCNEF9S1zTV5AlIaUUpRoFU3oA2gWR0CSZ8H+6y0KdX2UKGgGaAloD0MIxXb3AN20ZUCUhpRSlGgVTegDaBZHQJJn/rVvuPV1fZQoaAZoCWgPQwh+VMN+z6llQJSGlFKUaBVN6ANoFkdAkmh22oegc3V9lChoBmgJaA9DCLx4P26/DENAlIaUUpRoFUvuaBZHQJJqW40/GER1fZQoaAZoCWgPQwhGKLaCps1dQJSGlFKUaBVN6ANoFkdAkmswo9cKPXV9lChoBmgJaA9DCJXXSuiuSGRAlIaUUpRoFU3oA2gWR0CScTLeyiVTdX2UKGgGaAloD0MIfevDeqPMVUCUhpRSlGgVTQkBaBZHQJJ6HyhBZ6l1fZQoaAZoCWgPQwjEJ51IsJ1iQJSGlFKUaBVN6ANoFkdAkn69pAUtZnV9lChoBmgJaA9DCCYeUDZlxm9AlIaUUpRoFU1yA2gWR0CSgviqQzUJdX2UKGgGaAloD0MI5j+k3z7AYkCUhpRSlGgVTegDaBZHQJKGafe1rqN1fZQoaAZoCWgPQwioUrMHWqdhQJSGlFKUaBVN6ANoFkdAkpv+fRNRFnV9lChoBmgJaA9DCLGjcahflGFAlIaUUpRoFU3oA2gWR0CSn7Mpw0fpdX2UKGgGaAloD0MI+bziqUcAYECUhpRSlGgVTegDaBZHQJKg2yyD7Il1fZQoaAZoCWgPQwgLYTWWsAVkQJSGlFKUaBVN6ANoFkdAkqKRMFlkH3V9lChoBmgJaA9DCFEWvr7WmXBAlIaUUpRoFU2pA2gWR0CSqQexwAEMdX2UKGgGaAloD0MI2PD0StnSY0CUhpRSlGgVTegDaBZHQJKsXa37UG51fZQoaAZoCWgPQwggKLfte4gzQJSGlFKUaBVL+WgWR0CSrccv/R3NdX2UKGgGaAloD0MI1xael4psW0CUhpRSlGgVTegDaBZHQJKy79CNS611fZQoaAZoCWgPQwiXyAVn8L9jQJSGlFKUaBVN6ANoFkdAkrN+wLVnVXV9lChoBmgJaA9DCAw+zckLCWVAlIaUUpRoFU3oA2gWR0CSs8dhRZU2dX2UKGgGaAloD0MIT+W0p+TKZECUhpRSlGgVTegDaBZHQJK0SgUUO/d1fZQoaAZoCWgPQwjUSba6HCNgQJSGlFKUaBVN6ANoFkdAkrZBbr1M/XV9lChoBmgJaA9DCOUmamluDGVAlIaUUpRoFU3oA2gWR0CSvXhB7eEadX2UKGgGaAloD0MIrcCQ1a3VZECUhpRSlGgVTegDaBZHQJLHTfsNUfh1fZQoaAZoCWgPQwjLZaNzfsVnQJSGlFKUaBVN6ANoFkdAkswjO5avBHV9lChoBmgJaA9DCJnVO9yOQWdAlIaUUpRoFU3oA2gWR0CS0I176YVqdX2UKGgGaAloD0MIEXFzKhnqYkCUhpRSlGgVTegDaBZHQJLUZbt7a7F1fZQoaAZoCWgPQwgQO1PovPheQJSGlFKUaBVN6ANoFkdAkuqnEZR8+nV9lChoBmgJaA9DCGDoEaNn7GBAlIaUUpRoFU3oA2gWR0CS7pEGJN0vdX2UKGgGaAloD0MI0o2wqAiVZUCUhpRSlGgVTegDaBZHQJLxvg4wRGt1fZQoaAZoCWgPQwhu93KfHJdfQJSGlFKUaBVN6ANoFkdAkvnokeIVM3V9lChoBmgJaA9DCDylg/U/0HBAlIaUUpRoFU30AWgWR0CS+pnwXqJNdX2UKGgGaAloD0MI96xrtByIX0CUhpRSlGgVTegDaBZHQJL9ovnKW9l1fZQoaAZoCWgPQwhm2Cjrt1BnQJSGlFKUaBVN6ANoFkdAkv8d7fHgg3V9lChoBmgJaA9DCNNKIZBLWmNAlIaUUpRoFU3oA2gWR0CTA/Ui6g/UdX2UKGgGaAloD0MIZi5weSyAZkCUhpRSlGgVTegDaBZHQJMEbEbYK6Z1fZQoaAZoCWgPQwjQ0hVso79lQJSGlFKUaBVN6ANoFkdAkwSm+j/Mn3V9lChoBmgJaA9DCDjaccPv4V9AlIaUUpRoFU3oA2gWR0CTBRaRp1zRdX2UKGgGaAloD0MIyJqRQe4CY0CUhpRSlGgVTegDaBZHQJMG11uBMBZ1fZQoaAZoCWgPQwiaQBGLGOpmQJSGlFKUaBVN6ANoFkdAkw0aePJaJXV9lChoBmgJaA9DCJOLMbCO4zRAlIaUUpRoFUvvaBZHQJMQqzLOiWV1fZQoaAZoCWgPQwhQi8HDtJ81QJSGlFKUaBVL7mgWR0CTEN0QK8cudX2UKGgGaAloD0MILSXLSSgfXkCUhpRSlGgVTegDaBZHQJMavXarWAh1fZQoaAZoCWgPQwiqmbUUkEpjQJSGlFKUaBVN6ANoFkdAkx8AWepXIXV9lChoBmgJaA9DCAiPNo5YQ1xAlIaUUpRoFU3oA2gWR0CTIsaKUFB6dX2UKGgGaAloD0MIrOEi9/SbZkCUhpRSlGgVTegDaBZHQJMljrAxi5N1fZQoaAZoCWgPQwgU61T5nthjQJSGlFKUaBVN6ANoFkdAkzyLkjopx3V9lChoBmgJaA9DCDffiO5ZDGVAlIaUUpRoFU3oA2gWR0CTP5H0btJGdX2UKGgGaAloD0MI/RAbLJxSZECUhpRSlGgVTegDaBZHQJNG6Ww/xDt1fZQoaAZoCWgPQwhDcFzGzaZnQJSGlFKUaBVN6ANoFkdAk0eAjQiRn3V9lChoBmgJaA9DCEQUkzfAL2JAlIaUUpRoFU3oA2gWR0CTSjv2Xb/PdX2UKGgGaAloD0MI7Es2HmxkYkCUhpRSlGgVTegDaBZHQJNLrKoybhF1fZQoaAZoCWgPQwihSs0e6IFhQJSGlFKUaBVN6ANoFkdAk1AqYNRWLnV9lChoBmgJaA9DCKZ+3lSk8V9AlIaUUpRoFU3oA2gWR0CTUUd7v5P/dX2UKGgGaAloD0MI+tUcIJhWZECUhpRSlGgVTegDaBZHQJNTKBQN0/51fZQoaAZoCWgPQwgfZFkwcTBnQJSGlFKUaBVN6ANoFkdAk1oGjsUqQXV9lChoBmgJaA9DCCYZOQt7wVVAlIaUUpRoFUvVaBZHQJNc4bMotth1fZQoaAZoCWgPQwjDYtS1dlZiQJSGlFKUaBVN6ANoFkdAk12in5zo2XV9lChoBmgJaA9DCNSAQdInWmZAlIaUUpRoFU3oA2gWR0CTXczj3mFKdX2UKGgGaAloD0MIHJdxU4NjaECUhpRSlGgVTegDaBZHQJNm8xL0z0p1fZQoaAZoCWgPQwjgMNEgheBiQJSGlFKUaBVN6ANoFkdAk2rqHoHLR3V9lChoBmgJaA9DCO1Ky0i94l5AlIaUUpRoFU3oA2gWR0CTbopljEvTdX2UKGgGaAloD0MI8gwa+icrZUCUhpRSlGgVTegDaBZHQJNxOS7oSth1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c8bbe52535203e5b2615457f3ac92cd4b872fdd4dd7a63997d19a4a3d578b0d
|
3 |
+
size 147416
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f55cfa27670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f55cfa27700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f55cfa27790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f55cfa27820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f55cfa278b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f55cfa27940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f55cfa279d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f55cfa27a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f55cfa27af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f55cfa27b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f55cfa27c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f55cfa27ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f55cfa20960>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673604839259596220,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoxhD1ck0W6/X6fOSlnkTRMQgq6tqO8uAAAgD8AAIA/QOuNvR1phD7yU649AMJXvtifGLwKfZq9AAAAAAAAAABgslC+VtBfP3ie/b3Afai+Y5ChvWNZsTwAAAAAAAAAADOzVjwpEC66g+vdOmkH3DXX3Yq7YfMCugAAgD8AAIA/mqmfOlzjT7oMl0C6k+m+tZ3ZsDouCGM5AACAPwAAgD9mBjO7e8qNugBmI7y3zro2fXKUujjQKbYAAIA/AACAPwBbtzzDCXG65sNkutUgD7Vx+q+6n3+DOQAAgD8AAIA/miFovCkAFLpK+XS7QqBhNun4rziUgYw6AACAPwAAgD+atVE8e0SPugtvvbndjY62iVYHO/6p3DgAAIA/AACAPxP3DT7CpPA+NuxWvlkwjL5u5R695UfiugAAAAAAAAAAJlTkPcDvlj+Otkw+jH1Pvn7eaD63ACE+AAAAAAAAAABmX5M8KRA0uuoFbzmrfig0Gu2XumbqirgAAIA/AACAPwCkjLwpSCC6UowPvB+UbTZp2Ku7kBfWtQAAgD8AAIA/M7+VPHvykrrw5Fg6yRpANb0zVLpWVXu5AACAPwAAgD8zC388KQw1ujVDijqmzoQ1CQMQOz4OorkAAIA/AACAPwD7rbx7uIS6xfdgOmSrGTUQI2q7JzCAuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvVErTN8YWkCUhpRSlIwBbJRN6AOMAXSUR0CRuVW8h9srdX2UKGgGaAloD0MINjrnpziuAMCUhpRSlGgVTRkBaBZHQJG7bzDn/1h1fZQoaAZoCWgPQwhJLZRMzmNhQJSGlFKUaBVN6ANoFkdAkb9DMibDuXV9lChoBmgJaA9DCF34wfnU5UNAlIaUUpRoFUv+aBZHQJHGPK+zt1J1fZQoaAZoCWgPQwi2niEcsyFfQJSGlFKUaBVN6ANoFkdAkcbb0aqCH3V9lChoBmgJaA9DCD9uv3wyyGNAlIaUUpRoFU3oA2gWR0CRxx1PWQOndX2UKGgGaAloD0MIR+S7lDoGYUCUhpRSlGgVTegDaBZHQJHHuGWUr091fZQoaAZoCWgPQwhRu18F+HNgQJSGlFKUaBVN6ANoFkdAkcqeR1X/53V9lChoBmgJaA9DCJM2VfdIIWNAlIaUUpRoFU3oA2gWR0CR0WaPjn3ddX2UKGgGaAloD0MIdENTdnrEY0CUhpRSlGgVTegDaBZHQJHgBQLux8l1fZQoaAZoCWgPQwikchO1NEFdQJSGlFKUaBVN6ANoFkdAkf1dUsFt9HV9lChoBmgJaA9DCIlBYOVQjGVAlIaUUpRoFU3oA2gWR0CSAZEfDDTCdX2UKGgGaAloD0MIYvTcQldbaUCUhpRSlGgVTegDaBZHQJIC6O+7Dl51fZQoaAZoCWgPQwje40wTtgxkQJSGlFKUaBVN6ANoFkdAkga7hrFfiXV9lChoBmgJaA9DCKn7AKS2InFAlIaUUpRoFU1dA2gWR0CSBvgv114gdX2UKGgGaAloD0MIJZLoZRSBYkCUhpRSlGgVTegDaBZHQJIIK4y44Id1fZQoaAZoCWgPQwgc6+I2ml1hQJSGlFKUaBVN6ANoFkdAkgn2GIsRQXV9lChoBmgJaA9DCIj1Rq0wlGFAlIaUUpRoFU3oA2gWR0CSEGBYFJQMdX2UKGgGaAloD0MIri6nBMRpYkCUhpRSlGgVTegDaBZHQJIUHk7wKBx1fZQoaAZoCWgPQwjcLckBu95lQJSGlFKUaBVN6ANoFkdAkhrRW912aHV9lChoBmgJaA9DCMHEH0Wd815AlIaUUpRoFU3oA2gWR0CSG1rJKaoddX2UKGgGaAloD0MIGvuSjYfiY0CUhpRSlGgVTegDaBZHQJIbl5u63Ap1fZQoaAZoCWgPQwj3zf3V4+VgQJSGlFKUaBVN6ANoFkdAkhwSp71Iy3V9lChoBmgJaA9DCGa9GMqJiV9AlIaUUpRoFU3oA2gWR0CSHrMbFS88dX2UKGgGaAloD0MIHD9UGjEBZ0CUhpRSlGgVTegDaBZHQJIkrUc4o7V1fZQoaAZoCWgPQwhWEW4yKkFhQJSGlFKUaBVN6ANoFkdAkjHH+MqBmXV9lChoBmgJaA9DCLK5ap4jF2VAlIaUUpRoFU3oA2gWR0CSTQyxiXpodX2UKGgGaAloD0MI5IdKI+a4YkCUhpRSlGgVTegDaBZHQJJP2yE+Pil1fZQoaAZoCWgPQwj4F0FjpqZjQJSGlFKUaBVN6ANoFkdAklCxm03OwHV9lChoBmgJaA9DCBh5WRML72RAlIaUUpRoFU3oA2gWR0CSU2UG3WnTdX2UKGgGaAloD0MIk6ZB0Tx4Y0CUhpRSlGgVTegDaBZHQJJTnfcer+51fZQoaAZoCWgPQwi0sKcdfuVlQJSGlFKUaBVN6ANoFkdAklTOXiR4hXV9lChoBmgJaA9DCA9Dq5OzW2JAlIaUUpRoFU3oA2gWR0CSVpD0UXYUdX2UKGgGaAloD0MI3CvzVt08ZECUhpRSlGgVTegDaBZHQJJcv/ACW/t1fZQoaAZoCWgPQwgvUigLX91nQJSGlFKUaBVN6ANoFkdAkmCzzND+i3V9lChoBmgJaA9DCETDYtS14jxAlIaUUpRoFUv7aBZHQJJg0m/nGKh1fZQoaAZoCWgPQwjoL/SI0SJmQJSGlFKUaBVN6ANoFkdAkmc1N1yNoHV9lChoBmgJaA9DCNEF9S1zTV5AlIaUUpRoFU3oA2gWR0CSZ8H+6y0KdX2UKGgGaAloD0MIxXb3AN20ZUCUhpRSlGgVTegDaBZHQJJn/rVvuPV1fZQoaAZoCWgPQwh+VMN+z6llQJSGlFKUaBVN6ANoFkdAkmh22oegc3V9lChoBmgJaA9DCLx4P26/DENAlIaUUpRoFUvuaBZHQJJqW40/GER1fZQoaAZoCWgPQwhGKLaCps1dQJSGlFKUaBVN6ANoFkdAkmswo9cKPXV9lChoBmgJaA9DCJXXSuiuSGRAlIaUUpRoFU3oA2gWR0CScTLeyiVTdX2UKGgGaAloD0MIfevDeqPMVUCUhpRSlGgVTQkBaBZHQJJ6HyhBZ6l1fZQoaAZoCWgPQwjEJ51IsJ1iQJSGlFKUaBVN6ANoFkdAkn69pAUtZnV9lChoBmgJaA9DCCYeUDZlxm9AlIaUUpRoFU1yA2gWR0CSgviqQzUJdX2UKGgGaAloD0MI5j+k3z7AYkCUhpRSlGgVTegDaBZHQJKGafe1rqN1fZQoaAZoCWgPQwioUrMHWqdhQJSGlFKUaBVN6ANoFkdAkpv+fRNRFnV9lChoBmgJaA9DCLGjcahflGFAlIaUUpRoFU3oA2gWR0CSn7Mpw0fpdX2UKGgGaAloD0MI+bziqUcAYECUhpRSlGgVTegDaBZHQJKg2yyD7Il1fZQoaAZoCWgPQwgLYTWWsAVkQJSGlFKUaBVN6ANoFkdAkqKRMFlkH3V9lChoBmgJaA9DCFEWvr7WmXBAlIaUUpRoFU2pA2gWR0CSqQexwAEMdX2UKGgGaAloD0MI2PD0StnSY0CUhpRSlGgVTegDaBZHQJKsXa37UG51fZQoaAZoCWgPQwggKLfte4gzQJSGlFKUaBVL+WgWR0CSrccv/R3NdX2UKGgGaAloD0MI1xael4psW0CUhpRSlGgVTegDaBZHQJKy79CNS611fZQoaAZoCWgPQwiXyAVn8L9jQJSGlFKUaBVN6ANoFkdAkrN+wLVnVXV9lChoBmgJaA9DCAw+zckLCWVAlIaUUpRoFU3oA2gWR0CSs8dhRZU2dX2UKGgGaAloD0MIT+W0p+TKZECUhpRSlGgVTegDaBZHQJK0SgUUO/d1fZQoaAZoCWgPQwjUSba6HCNgQJSGlFKUaBVN6ANoFkdAkrZBbr1M/XV9lChoBmgJaA9DCOUmamluDGVAlIaUUpRoFU3oA2gWR0CSvXhB7eEadX2UKGgGaAloD0MIrcCQ1a3VZECUhpRSlGgVTegDaBZHQJLHTfsNUfh1fZQoaAZoCWgPQwjLZaNzfsVnQJSGlFKUaBVN6ANoFkdAkswjO5avBHV9lChoBmgJaA9DCJnVO9yOQWdAlIaUUpRoFU3oA2gWR0CS0I176YVqdX2UKGgGaAloD0MIEXFzKhnqYkCUhpRSlGgVTegDaBZHQJLUZbt7a7F1fZQoaAZoCWgPQwgQO1PovPheQJSGlFKUaBVN6ANoFkdAkuqnEZR8+nV9lChoBmgJaA9DCGDoEaNn7GBAlIaUUpRoFU3oA2gWR0CS7pEGJN0vdX2UKGgGaAloD0MI0o2wqAiVZUCUhpRSlGgVTegDaBZHQJLxvg4wRGt1fZQoaAZoCWgPQwhu93KfHJdfQJSGlFKUaBVN6ANoFkdAkvnokeIVM3V9lChoBmgJaA9DCDylg/U/0HBAlIaUUpRoFU30AWgWR0CS+pnwXqJNdX2UKGgGaAloD0MI96xrtByIX0CUhpRSlGgVTegDaBZHQJL9ovnKW9l1fZQoaAZoCWgPQwhm2Cjrt1BnQJSGlFKUaBVN6ANoFkdAkv8d7fHgg3V9lChoBmgJaA9DCNNKIZBLWmNAlIaUUpRoFU3oA2gWR0CTA/Ui6g/UdX2UKGgGaAloD0MIZi5weSyAZkCUhpRSlGgVTegDaBZHQJMEbEbYK6Z1fZQoaAZoCWgPQwjQ0hVso79lQJSGlFKUaBVN6ANoFkdAkwSm+j/Mn3V9lChoBmgJaA9DCDjaccPv4V9AlIaUUpRoFU3oA2gWR0CTBRaRp1zRdX2UKGgGaAloD0MIyJqRQe4CY0CUhpRSlGgVTegDaBZHQJMG11uBMBZ1fZQoaAZoCWgPQwiaQBGLGOpmQJSGlFKUaBVN6ANoFkdAkw0aePJaJXV9lChoBmgJaA9DCJOLMbCO4zRAlIaUUpRoFUvvaBZHQJMQqzLOiWV1fZQoaAZoCWgPQwhQi8HDtJ81QJSGlFKUaBVL7mgWR0CTEN0QK8cudX2UKGgGaAloD0MILSXLSSgfXkCUhpRSlGgVTegDaBZHQJMavXarWAh1fZQoaAZoCWgPQwiqmbUUkEpjQJSGlFKUaBVN6ANoFkdAkx8AWepXIXV9lChoBmgJaA9DCAiPNo5YQ1xAlIaUUpRoFU3oA2gWR0CTIsaKUFB6dX2UKGgGaAloD0MIrOEi9/SbZkCUhpRSlGgVTegDaBZHQJMljrAxi5N1fZQoaAZoCWgPQwgU61T5nthjQJSGlFKUaBVN6ANoFkdAkzyLkjopx3V9lChoBmgJaA9DCDffiO5ZDGVAlIaUUpRoFU3oA2gWR0CTP5H0btJGdX2UKGgGaAloD0MI/RAbLJxSZECUhpRSlGgVTegDaBZHQJNG6Ww/xDt1fZQoaAZoCWgPQwhDcFzGzaZnQJSGlFKUaBVN6ANoFkdAk0eAjQiRn3V9lChoBmgJaA9DCEQUkzfAL2JAlIaUUpRoFU3oA2gWR0CTSjv2Xb/PdX2UKGgGaAloD0MI7Es2HmxkYkCUhpRSlGgVTegDaBZHQJNLrKoybhF1fZQoaAZoCWgPQwihSs0e6IFhQJSGlFKUaBVN6ANoFkdAk1AqYNRWLnV9lChoBmgJaA9DCKZ+3lSk8V9AlIaUUpRoFU3oA2gWR0CTUUd7v5P/dX2UKGgGaAloD0MI+tUcIJhWZECUhpRSlGgVTegDaBZHQJNTKBQN0/51fZQoaAZoCWgPQwgfZFkwcTBnQJSGlFKUaBVN6ANoFkdAk1oGjsUqQXV9lChoBmgJaA9DCCYZOQt7wVVAlIaUUpRoFUvVaBZHQJNc4bMotth1fZQoaAZoCWgPQwjDYtS1dlZiQJSGlFKUaBVN6ANoFkdAk12in5zo2XV9lChoBmgJaA9DCNSAQdInWmZAlIaUUpRoFU3oA2gWR0CTXczj3mFKdX2UKGgGaAloD0MIHJdxU4NjaECUhpRSlGgVTegDaBZHQJNm8xL0z0p1fZQoaAZoCWgPQwjgMNEgheBiQJSGlFKUaBVN6ANoFkdAk2rqHoHLR3V9lChoBmgJaA9DCO1Ky0i94l5AlIaUUpRoFU3oA2gWR0CTbopljEvTdX2UKGgGaAloD0MI8gwa+icrZUCUhpRSlGgVTegDaBZHQJNxOS7oSth1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf82e44722798841065f951b147a23d44035b56918f213374dc0ee248f09cb89
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c069e88e52501cd1c01626c16ae72c77f87a2c55d108adc98d64e2b1887e9fa
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (226 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 237.1018842884536, "std_reward": 11.33668415681535, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T10:37:19.553124"}
|