Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 252.92 +/- 21.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff538d35e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff538d3670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff538d3700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff538d3790>", "_build": "<function ActorCriticPolicy._build at 0x7eff538d3820>", "forward": "<function ActorCriticPolicy.forward at 0x7eff538d38b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff538d3940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff538d39d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff538d3a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff538d3af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff538d3b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff538d3c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff538cf540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673886065517011770, "learning_rate": 0.0011855543286539809, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/U2yTRG3GMIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoIn7z0Z5W8TcCmPUOHtLttuQC+18CPvAAAgD8AAIA/JqmsPX8PXj/aJPW+M32YvsurZb3VmVG+AAAAAAAAAACzTaS9HAk7PkBzHL20yya+6gGmvX4mTbsAAAAAAAAAAHqDcb5q7IY/baC3vkZ0r77McES+ynIUvgAAAAAAAAAA3ap+vpnSDj/wSKg+7hybvkZGVT26A3K8AAAAAAAAAACa/Qy+I4Y/P6hZ5D0N2oq+AAriPFSuwbwAAAAAAAAAAEBQwz2leIs/hMkNPRoIUb7L4EA+GNLwuwAAAAAAAAAAAAAVuZQH9jv7p0s+MxIpvsLuPD0JK4E9AAAAAAAAAADzh8+9vZgrPEKl3T0Uq1S+IRP0vQt05TwAAIA/AAAAABr5Kr2kbvo9a0FPPqKFUL7iA8M9rZIrPQAAAAAAAAAAzfkove7VqD9OXcG+rOC4vsGMsjymtIu8AAAAAAAAAAAanBK9T6FMP9tvs76UE0m+vBe9vVpzPL0AAAAAAAAAACbn0b2bA8k9w5C7PTNyg75K7Hc83nenvAAAAAAAAAAAmoX4vA5WjD8mhPi9Ayp0vvt/pDzSb2q9AAAAAAAAAACaDfW7Y445P+lwjL70WWG+v3wLvj9Tgr0AAAAAAAAAAACI6rspzCy6AMXvN2HkhjMFnCw7URcLtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG/LPDOL+bUCUhpRSlIwBbJRNUwGMAXSUR0CXT6k5ZKWcdX2UKGgGaAloD0MIOs5twr2nbkCUhpRSlGgVTV0BaBZHQJdQFZGKAJ91fZQoaAZoCWgPQwgPZD21+ltwQJSGlFKUaBVNegFoFkdAl1MPu5SWJXV9lChoBmgJaA9DCBuciH5tP3FAlIaUUpRoFU2cAWgWR0CXU0UILPUsdX2UKGgGaAloD0MIHhoWoy6ObkCUhpRSlGgVTYEBaBZHQJdTUWuX/o91fZQoaAZoCWgPQwgJ3SVxVsFuQJSGlFKUaBVNOwFoFkdAl1N+eBg/knV9lChoBmgJaA9DCNhK6C7JO3FAlIaUUpRoFU0rAWgWR0CXWlxn3+MqdX2UKGgGaAloD0MIYrt7gK6LckCUhpRSlGgVTV8BaBZHQJda1stTUAl1fZQoaAZoCWgPQwg3ww34fEVtQJSGlFKUaBVNmgFoFkdAl1sQ+MZP23V9lChoBmgJaA9DCMqJdhWS7XFAlIaUUpRoFU1RAWgWR0CXW5S2H+IedX2UKGgGaAloD0MIpTFaR9UKcUCUhpRSlGgVTYUBaBZHQJdct1aGHpN1fZQoaAZoCWgPQwi7Cb5pettuQJSGlFKUaBVNpQFoFkdAl12GattALXV9lChoBmgJaA9DCMsPXOUJHG1AlIaUUpRoFU10AWgWR0CXYGAlOXVtdX2UKGgGaAloD0MIIqrwZ7gjckCUhpRSlGgVTXEBaBZHQJdjbpV0cOt1fZQoaAZoCWgPQwj5oj1eSPNuQJSGlFKUaBVNfAFoFkdAl2i8rqdH2HV9lChoBmgJaA9DCHaIf9jS7UFAlIaUUpRoFU0nAWgWR0CXaSHbAUL2dX2UKGgGaAloD0MIahZod4jvcECUhpRSlGgVTX0BaBZHQJdpLaFmFrV1fZQoaAZoCWgPQwhkyoegarBrQJSGlFKUaBVNdgFoFkdAl2lQR9PUKHV9lChoBmgJaA9DCE+sU+V72m9AlIaUUpRoFU2UAWgWR0CXaxGjKxLTdX2UKGgGaAloD0MI1c+bitSFb0CUhpRSlGgVTWkBaBZHQJdsQGA08/51fZQoaAZoCWgPQwi/LO3UHF9xQJSGlFKUaBVNbgFoFkdAl2yB37k4m3V9lChoBmgJaA9DCMUdb/IbaHBAlIaUUpRoFU1uAWgWR0CXbK/G2kSFdX2UKGgGaAloD0MI3iHFAIn2cUCUhpRSlGgVTUYBaBZHQJdtScriEQJ1fZQoaAZoCWgPQwgM6IU7l4BuQJSGlFKUaBVNcgFoFkdAl26Mv/R3NnV9lChoBmgJaA9DCCEf9GzW+G1AlIaUUpRoFU1lAWgWR0CXbr46fapQdX2UKGgGaAloD0MIehubHSmpb0CUhpRSlGgVTWcBaBZHQJdvTYWcjJN1fZQoaAZoCWgPQwgLf4Y3a3lxQJSGlFKUaBVNOAFoFkdAl2+efVZs9HV9lChoBmgJaA9DCBKHbCDdKHBAlIaUUpRoFU1iAWgWR0CXcCbiqABldX2UKGgGaAloD0MI7DL8p1sackCUhpRSlGgVTTABaBZHQJd6P5O8Cgd1fZQoaAZoCWgPQwiYGMv0y2ZvQJSGlFKUaBVNRAFoFkdAl3pzAJswc3V9lChoBmgJaA9DCFSrr66KuG9AlIaUUpRoFU2SAWgWR0CXexVM23rldX2UKGgGaAloD0MIfH2tS41Ra0CUhpRSlGgVTV8BaBZHQJd77hcZ9/l1fZQoaAZoCWgPQwiGWP0Rho5wQJSGlFKUaBVNWgFoFkdAl3wayWzF/HV9lChoBmgJaA9DCPZFQluOFHBAlIaUUpRoFU1qAWgWR0CXfMV0Lc9GdX2UKGgGaAloD0MIeqaXGMsSbUCUhpRSlGgVTUQBaBZHQJd9BihFmWd1fZQoaAZoCWgPQwguqdpugo1DQJSGlFKUaBVNGwFoFkdAl38xIBikPHV9lChoBmgJaA9DCDlgV5MnsG9AlIaUUpRoFU1dAWgWR0CXf6HP/rB1dX2UKGgGaAloD0MI0LhwIKTzb0CUhpRSlGgVTV0BaBZHQJd/1MajveB1fZQoaAZoCWgPQwhO0ZFcfo5rQJSGlFKUaBVNhQFoFkdAl4EVn7Hhj3V9lChoBmgJaA9DCGpLHeT1CnBAlIaUUpRoFU0zAWgWR0CXgWlSjxkNdX2UKGgGaAloD0MILCl3n2OybkCUhpRSlGgVTX0BaBZHQJeBxdHDrJN1fZQoaAZoCWgPQwjWbyami09tQJSGlFKUaBVNUwFoFkdAl4I11B+nZXV9lChoBmgJaA9DCFeVfVeEUnFAlIaUUpRoFU1sAWgWR0CXglVDa4+bdX2UKGgGaAloD0MIhxVu+UiUT0CUhpRSlGgVS9RoFkdAl4pW8AaNuXV9lChoBmgJaA9DCCS4kbJF521AlIaUUpRoFU2NAWgWR0CXimPiT+vRdX2UKGgGaAloD0MIg/qWOd2LcUCUhpRSlGgVTTgBaBZHQJeODZsbedl1fZQoaAZoCWgPQwgZraOqCRxrQJSGlFKUaBVNXAFoFkdAl45UCNjslnV9lChoBmgJaA9DCEq4kEewSXFAlIaUUpRoFU1gAWgWR0CXjlWD6FdtdX2UKGgGaAloD0MImrZ/ZaXhcECUhpRSlGgVTVoBaBZHQJeO0wudwvR1fZQoaAZoCWgPQwjfjJqvUspwQJSGlFKUaBVNWAFoFkdAl4+o3m3fAXV9lChoBmgJaA9DCBBZpIl3/XFAlIaUUpRoFU0jAWgWR0CXkFUSIxgzdX2UKGgGaAloD0MIgjgPJ7AEcECUhpRSlGgVTYcBaBZHQJeX5Muez2R1fZQoaAZoCWgPQwgXSbvRx9xvQJSGlFKUaBVNUgFoFkdAl5gTrE9+w3V9lChoBmgJaA9DCN46/3bZbGtAlIaUUpRoFU1ZAWgWR0CXmIsYEW69dX2UKGgGaAloD0MI8UdRZ+5nbkCUhpRSlGgVTTsBaBZHQJeYi1G9YfZ1fZQoaAZoCWgPQwjjHHV0XBNtQJSGlFKUaBVNOQFoFkdAl5jFD0Dlo3V9lChoBmgJaA9DCIeIm1NJcG1AlIaUUpRoFU1OAWgWR0CXmmkdV/+bdX2UKGgGaAloD0MIqwSLw5mycECUhpRSlGgVTX0BaBZHQJeboyULUkR1fZQoaAZoCWgPQwgjERrBBgBxQJSGlFKUaBVNeQFoFkdAl5v1fzBhyHV9lChoBmgJaA9DCKyql9/pZXFAlIaUUpRoFU0hAWgWR0CXn/26kIomdX2UKGgGaAloD0MIjBL0FzqjcUCUhpRSlGgVTaIBaBZHQJehwYbbUPR1fZQoaAZoCWgPQwjh0cYRa4FsQJSGlFKUaBVNWAFoFkdAl6IP9tMwlHV9lChoBmgJaA9DCFotsMcEz3FAlIaUUpRoFU1XAWgWR0CXokInSfDldX2UKGgGaAloD0MIqgoNxLIXb0CUhpRSlGgVTa8BaBZHQJeiWt1ZDAt1fZQoaAZoCWgPQwiL+bmhaW1wQJSGlFKUaBVNMAFoFkdAl6KZcxCY1HV9lChoBmgJaA9DCCxJnuv7GW5AlIaUUpRoFU1hAWgWR0CXp+4QSSNgdX2UKGgGaAloD0MIeQYN/RPVb0CUhpRSlGgVTWMBaBZHQJepKKekHlh1fZQoaAZoCWgPQwhpp+ZyA45yQJSGlFKUaBVNLQFoFkdAl6muIAOrhnV9lChoBmgJaA9DCDvGFRdHdW9AlIaUUpRoFU00AWgWR0CXqhT4+KTCdX2UKGgGaAloD0MIHR1XI7uybUCUhpRSlGgVTUABaBZHQJerOHKwIMV1fZQoaAZoCWgPQwi2uwfoPhNvQJSGlFKUaBVNZAFoFkdAl6xbBGhEjXV9lChoBmgJaA9DCB11dFwNYHBAlIaUUpRoFU1sAWgWR0CXrKaqS5iFdX2UKGgGaAloD0MIzCVV202+b0CUhpRSlGgVTVQBaBZHQJetldld1Md1fZQoaAZoCWgPQwiAYmTJ3C9yQJSGlFKUaBVNMAFoFkdAl625vkzXSXV9lChoBmgJaA9DCKzGEtbGdG5AlIaUUpRoFU1MAWgWR0CXrl4O+ZgHdX2UKGgGaAloD0MIMKGCwwvCS0CUhpRSlGgVS9ZoFkdAl7euFpPAPHV9lChoBmgJaA9DCIo73uS3+m1AlIaUUpRoFU1jAWgWR0CXuWFr2xptdX2UKGgGaAloD0MIkgThCigyckCUhpRSlGgVTToBaBZHQJe5fjrAxi51fZQoaAZoCWgPQwi4j9yatHFwQJSGlFKUaBVNUAFoFkdAl7ogntv4unV9lChoBmgJaA9DCHpSJjW003JAlIaUUpRoFU1MAWgWR0CXujxBE8aGdX2UKGgGaAloD0MIyH2rdeKjb0CUhpRSlGgVTVIBaBZHQJe7FGsmv4d1fZQoaAZoCWgPQwhp/S0BeJ9qQJSGlFKUaBVNeAFoFkdAl7yy7GvOhXV9lChoBmgJaA9DCJD2P8DaPW5AlIaUUpRoFU1TAWgWR0CXvOA1NxlydX2UKGgGaAloD0MIYFlpUgolbECUhpRSlGgVTX4BaBZHQJe9TkWAPNF1fZQoaAZoCWgPQwidmzbjdKdyQJSGlFKUaBVNXwFoFkdAl73fkBCD3HV9lChoBmgJaA9DCDM0ngii1HBAlIaUUpRoFU1kAWgWR0CXv7FQEZBLdX2UKGgGaAloD0MIjSWsjTFecUCUhpRSlGgVTTABaBZHQJfANXRw6yV1fZQoaAZoCWgPQwjhtOBFX1hwQJSGlFKUaBVNaAFoFkdAl8D0Jng5znV9lChoBmgJaA9DCMrBbAKMDHFAlIaUUpRoFU1RAWgWR0CXwZR9gF5fdX2UKGgGaAloD0MI944aE+JncUCUhpRSlGgVTZIBaBZHQJfIAmXw9aF1fZQoaAZoCWgPQwiR8L2/QaFwQJSGlFKUaBVNcQFoFkdAl8jBubZvk3V9lChoBmgJaA9DCD7t8Nfk0m9AlIaUUpRoFU0tAWgWR0CXzAzY287IdX2UKGgGaAloD0MIjbgANMp+bkCUhpRSlGgVTV0BaBZHQJfMKATZg5R1fZQoaAZoCWgPQwgHXFfMSEVwQJSGlFKUaBVNRgFoFkdAl8yBKYiPhnV9lChoBmgJaA9DCKWeBaG8J21AlIaUUpRoFU1WAWgWR0CXzUq4H5aedX2UKGgGaAloD0MIVBuciP7cbUCUhpRSlGgVTVUBaBZHQJfNxq9Gqgh1fZQoaAZoCWgPQwgwD5nyoT5wQJSGlFKUaBVNUwFoFkdAl9A9qHoHLXV9lChoBmgJaA9DCBq/8EoSh2xAlIaUUpRoFU1UAWgWR0CX0Ma1kUbldX2UKGgGaAloD0MIUYcVbnnjbkCUhpRSlGgVTWMBaBZHQJfQ0rJ8v251fZQoaAZoCWgPQwhO7KF9LMBwQJSGlFKUaBVNpQFoFkdAl9JA9ic5KnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 256, "gamma": 0.9991946267165749, "gae_lambda": 0.9945492720131379, "ent_coef": 1.5314230989597823e-05, "vf_coef": 0.5, "max_grad_norm": 1.023648644160728, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeaa94bc272eeb748b9159b830b81c2e6396aaf7f4967615b52010bfa78e30e9
|
3 |
+
size 147498
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eff538d35e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff538d3670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff538d3700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff538d3790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eff538d3820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eff538d38b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff538d3940>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff538d39d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eff538d3a60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff538d3af0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff538d3b80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff538d3c10>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7eff538cf540>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1003520,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673886065517011770,
|
52 |
+
"learning_rate": 0.0011855543286539809,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/U2yTRG3GMIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoIn7z0Z5W8TcCmPUOHtLttuQC+18CPvAAAgD8AAIA/JqmsPX8PXj/aJPW+M32YvsurZb3VmVG+AAAAAAAAAACzTaS9HAk7PkBzHL20yya+6gGmvX4mTbsAAAAAAAAAAHqDcb5q7IY/baC3vkZ0r77McES+ynIUvgAAAAAAAAAA3ap+vpnSDj/wSKg+7hybvkZGVT26A3K8AAAAAAAAAACa/Qy+I4Y/P6hZ5D0N2oq+AAriPFSuwbwAAAAAAAAAAEBQwz2leIs/hMkNPRoIUb7L4EA+GNLwuwAAAAAAAAAAAAAVuZQH9jv7p0s+MxIpvsLuPD0JK4E9AAAAAAAAAADzh8+9vZgrPEKl3T0Uq1S+IRP0vQt05TwAAIA/AAAAABr5Kr2kbvo9a0FPPqKFUL7iA8M9rZIrPQAAAAAAAAAAzfkove7VqD9OXcG+rOC4vsGMsjymtIu8AAAAAAAAAAAanBK9T6FMP9tvs76UE0m+vBe9vVpzPL0AAAAAAAAAACbn0b2bA8k9w5C7PTNyg75K7Hc83nenvAAAAAAAAAAAmoX4vA5WjD8mhPi9Ayp0vvt/pDzSb2q9AAAAAAAAAACaDfW7Y445P+lwjL70WWG+v3wLvj9Tgr0AAAAAAAAAAACI6rspzCy6AMXvN2HkhjMFnCw7URcLtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIG/LPDOL+bUCUhpRSlIwBbJRNUwGMAXSUR0CXT6k5ZKWcdX2UKGgGaAloD0MIOs5twr2nbkCUhpRSlGgVTV0BaBZHQJdQFZGKAJ91fZQoaAZoCWgPQwgPZD21+ltwQJSGlFKUaBVNegFoFkdAl1MPu5SWJXV9lChoBmgJaA9DCBuciH5tP3FAlIaUUpRoFU2cAWgWR0CXU0UILPUsdX2UKGgGaAloD0MIHhoWoy6ObkCUhpRSlGgVTYEBaBZHQJdTUWuX/o91fZQoaAZoCWgPQwgJ3SVxVsFuQJSGlFKUaBVNOwFoFkdAl1N+eBg/knV9lChoBmgJaA9DCNhK6C7JO3FAlIaUUpRoFU0rAWgWR0CXWlxn3+MqdX2UKGgGaAloD0MIYrt7gK6LckCUhpRSlGgVTV8BaBZHQJda1stTUAl1fZQoaAZoCWgPQwg3ww34fEVtQJSGlFKUaBVNmgFoFkdAl1sQ+MZP23V9lChoBmgJaA9DCMqJdhWS7XFAlIaUUpRoFU1RAWgWR0CXW5S2H+IedX2UKGgGaAloD0MIpTFaR9UKcUCUhpRSlGgVTYUBaBZHQJdct1aGHpN1fZQoaAZoCWgPQwi7Cb5pettuQJSGlFKUaBVNpQFoFkdAl12GattALXV9lChoBmgJaA9DCMsPXOUJHG1AlIaUUpRoFU10AWgWR0CXYGAlOXVtdX2UKGgGaAloD0MIIqrwZ7gjckCUhpRSlGgVTXEBaBZHQJdjbpV0cOt1fZQoaAZoCWgPQwj5oj1eSPNuQJSGlFKUaBVNfAFoFkdAl2i8rqdH2HV9lChoBmgJaA9DCHaIf9jS7UFAlIaUUpRoFU0nAWgWR0CXaSHbAUL2dX2UKGgGaAloD0MIahZod4jvcECUhpRSlGgVTX0BaBZHQJdpLaFmFrV1fZQoaAZoCWgPQwhkyoegarBrQJSGlFKUaBVNdgFoFkdAl2lQR9PUKHV9lChoBmgJaA9DCE+sU+V72m9AlIaUUpRoFU2UAWgWR0CXaxGjKxLTdX2UKGgGaAloD0MI1c+bitSFb0CUhpRSlGgVTWkBaBZHQJdsQGA08/51fZQoaAZoCWgPQwi/LO3UHF9xQJSGlFKUaBVNbgFoFkdAl2yB37k4m3V9lChoBmgJaA9DCMUdb/IbaHBAlIaUUpRoFU1uAWgWR0CXbK/G2kSFdX2UKGgGaAloD0MI3iHFAIn2cUCUhpRSlGgVTUYBaBZHQJdtScriEQJ1fZQoaAZoCWgPQwgM6IU7l4BuQJSGlFKUaBVNcgFoFkdAl26Mv/R3NnV9lChoBmgJaA9DCCEf9GzW+G1AlIaUUpRoFU1lAWgWR0CXbr46fapQdX2UKGgGaAloD0MIehubHSmpb0CUhpRSlGgVTWcBaBZHQJdvTYWcjJN1fZQoaAZoCWgPQwgLf4Y3a3lxQJSGlFKUaBVNOAFoFkdAl2+efVZs9HV9lChoBmgJaA9DCBKHbCDdKHBAlIaUUpRoFU1iAWgWR0CXcCbiqABldX2UKGgGaAloD0MI7DL8p1sackCUhpRSlGgVTTABaBZHQJd6P5O8Cgd1fZQoaAZoCWgPQwiYGMv0y2ZvQJSGlFKUaBVNRAFoFkdAl3pzAJswc3V9lChoBmgJaA9DCFSrr66KuG9AlIaUUpRoFU2SAWgWR0CXexVM23rldX2UKGgGaAloD0MIfH2tS41Ra0CUhpRSlGgVTV8BaBZHQJd77hcZ9/l1fZQoaAZoCWgPQwiGWP0Rho5wQJSGlFKUaBVNWgFoFkdAl3wayWzF/HV9lChoBmgJaA9DCPZFQluOFHBAlIaUUpRoFU1qAWgWR0CXfMV0Lc9GdX2UKGgGaAloD0MIeqaXGMsSbUCUhpRSlGgVTUQBaBZHQJd9BihFmWd1fZQoaAZoCWgPQwguqdpugo1DQJSGlFKUaBVNGwFoFkdAl38xIBikPHV9lChoBmgJaA9DCDlgV5MnsG9AlIaUUpRoFU1dAWgWR0CXf6HP/rB1dX2UKGgGaAloD0MI0LhwIKTzb0CUhpRSlGgVTV0BaBZHQJd/1MajveB1fZQoaAZoCWgPQwhO0ZFcfo5rQJSGlFKUaBVNhQFoFkdAl4EVn7Hhj3V9lChoBmgJaA9DCGpLHeT1CnBAlIaUUpRoFU0zAWgWR0CXgWlSjxkNdX2UKGgGaAloD0MILCl3n2OybkCUhpRSlGgVTX0BaBZHQJeBxdHDrJN1fZQoaAZoCWgPQwjWbyami09tQJSGlFKUaBVNUwFoFkdAl4I11B+nZXV9lChoBmgJaA9DCFeVfVeEUnFAlIaUUpRoFU1sAWgWR0CXglVDa4+bdX2UKGgGaAloD0MIhxVu+UiUT0CUhpRSlGgVS9RoFkdAl4pW8AaNuXV9lChoBmgJaA9DCCS4kbJF521AlIaUUpRoFU2NAWgWR0CXimPiT+vRdX2UKGgGaAloD0MIg/qWOd2LcUCUhpRSlGgVTTgBaBZHQJeODZsbedl1fZQoaAZoCWgPQwgZraOqCRxrQJSGlFKUaBVNXAFoFkdAl45UCNjslnV9lChoBmgJaA9DCEq4kEewSXFAlIaUUpRoFU1gAWgWR0CXjlWD6FdtdX2UKGgGaAloD0MImrZ/ZaXhcECUhpRSlGgVTVoBaBZHQJeO0wudwvR1fZQoaAZoCWgPQwjfjJqvUspwQJSGlFKUaBVNWAFoFkdAl4+o3m3fAXV9lChoBmgJaA9DCBBZpIl3/XFAlIaUUpRoFU0jAWgWR0CXkFUSIxgzdX2UKGgGaAloD0MIgjgPJ7AEcECUhpRSlGgVTYcBaBZHQJeX5Muez2R1fZQoaAZoCWgPQwgXSbvRx9xvQJSGlFKUaBVNUgFoFkdAl5gTrE9+w3V9lChoBmgJaA9DCN46/3bZbGtAlIaUUpRoFU1ZAWgWR0CXmIsYEW69dX2UKGgGaAloD0MI8UdRZ+5nbkCUhpRSlGgVTTsBaBZHQJeYi1G9YfZ1fZQoaAZoCWgPQwjjHHV0XBNtQJSGlFKUaBVNOQFoFkdAl5jFD0Dlo3V9lChoBmgJaA9DCIeIm1NJcG1AlIaUUpRoFU1OAWgWR0CXmmkdV/+bdX2UKGgGaAloD0MIqwSLw5mycECUhpRSlGgVTX0BaBZHQJeboyULUkR1fZQoaAZoCWgPQwgjERrBBgBxQJSGlFKUaBVNeQFoFkdAl5v1fzBhyHV9lChoBmgJaA9DCKyql9/pZXFAlIaUUpRoFU0hAWgWR0CXn/26kIomdX2UKGgGaAloD0MIjBL0FzqjcUCUhpRSlGgVTaIBaBZHQJehwYbbUPR1fZQoaAZoCWgPQwjh0cYRa4FsQJSGlFKUaBVNWAFoFkdAl6IP9tMwlHV9lChoBmgJaA9DCFotsMcEz3FAlIaUUpRoFU1XAWgWR0CXokInSfDldX2UKGgGaAloD0MIqgoNxLIXb0CUhpRSlGgVTa8BaBZHQJeiWt1ZDAt1fZQoaAZoCWgPQwiL+bmhaW1wQJSGlFKUaBVNMAFoFkdAl6KZcxCY1HV9lChoBmgJaA9DCCxJnuv7GW5AlIaUUpRoFU1hAWgWR0CXp+4QSSNgdX2UKGgGaAloD0MIeQYN/RPVb0CUhpRSlGgVTWMBaBZHQJepKKekHlh1fZQoaAZoCWgPQwhpp+ZyA45yQJSGlFKUaBVNLQFoFkdAl6muIAOrhnV9lChoBmgJaA9DCDvGFRdHdW9AlIaUUpRoFU00AWgWR0CXqhT4+KTCdX2UKGgGaAloD0MIHR1XI7uybUCUhpRSlGgVTUABaBZHQJerOHKwIMV1fZQoaAZoCWgPQwi2uwfoPhNvQJSGlFKUaBVNZAFoFkdAl6xbBGhEjXV9lChoBmgJaA9DCB11dFwNYHBAlIaUUpRoFU1sAWgWR0CXrKaqS5iFdX2UKGgGaAloD0MIzCVV202+b0CUhpRSlGgVTVQBaBZHQJetldld1Md1fZQoaAZoCWgPQwiAYmTJ3C9yQJSGlFKUaBVNMAFoFkdAl625vkzXSXV9lChoBmgJaA9DCKzGEtbGdG5AlIaUUpRoFU1MAWgWR0CXrl4O+ZgHdX2UKGgGaAloD0MIMKGCwwvCS0CUhpRSlGgVS9ZoFkdAl7euFpPAPHV9lChoBmgJaA9DCIo73uS3+m1AlIaUUpRoFU1jAWgWR0CXuWFr2xptdX2UKGgGaAloD0MIkgThCigyckCUhpRSlGgVTToBaBZHQJe5fjrAxi51fZQoaAZoCWgPQwi4j9yatHFwQJSGlFKUaBVNUAFoFkdAl7ogntv4unV9lChoBmgJaA9DCHpSJjW003JAlIaUUpRoFU1MAWgWR0CXujxBE8aGdX2UKGgGaAloD0MIyH2rdeKjb0CUhpRSlGgVTVIBaBZHQJe7FGsmv4d1fZQoaAZoCWgPQwhp/S0BeJ9qQJSGlFKUaBVNeAFoFkdAl7yy7GvOhXV9lChoBmgJaA9DCJD2P8DaPW5AlIaUUpRoFU1TAWgWR0CXvOA1NxlydX2UKGgGaAloD0MIYFlpUgolbECUhpRSlGgVTX4BaBZHQJe9TkWAPNF1fZQoaAZoCWgPQwidmzbjdKdyQJSGlFKUaBVNXwFoFkdAl73fkBCD3HV9lChoBmgJaA9DCDM0ngii1HBAlIaUUpRoFU1kAWgWR0CXv7FQEZBLdX2UKGgGaAloD0MIjSWsjTFecUCUhpRSlGgVTTABaBZHQJfANXRw6yV1fZQoaAZoCWgPQwjhtOBFX1hwQJSGlFKUaBVNaAFoFkdAl8D0Jng5znV9lChoBmgJaA9DCMrBbAKMDHFAlIaUUpRoFU1RAWgWR0CXwZR9gF5fdX2UKGgGaAloD0MI944aE+JncUCUhpRSlGgVTZIBaBZHQJfIAmXw9aF1fZQoaAZoCWgPQwiR8L2/QaFwQJSGlFKUaBVNcQFoFkdAl8jBubZvk3V9lChoBmgJaA9DCD7t8Nfk0m9AlIaUUpRoFU0tAWgWR0CXzAzY287IdX2UKGgGaAloD0MIjbgANMp+bkCUhpRSlGgVTV0BaBZHQJfMKATZg5R1fZQoaAZoCWgPQwgHXFfMSEVwQJSGlFKUaBVNRgFoFkdAl8yBKYiPhnV9lChoBmgJaA9DCKWeBaG8J21AlIaUUpRoFU1WAWgWR0CXzUq4H5aedX2UKGgGaAloD0MIVBuciP7cbUCUhpRSlGgVTVUBaBZHQJfNxq9Gqgh1fZQoaAZoCWgPQwgwD5nyoT5wQJSGlFKUaBVNUwFoFkdAl9A9qHoHLXV9lChoBmgJaA9DCBq/8EoSh2xAlIaUUpRoFU1UAWgWR0CX0Ma1kUbldX2UKGgGaAloD0MIUYcVbnnjbkCUhpRSlGgVTWMBaBZHQJfQ0rJ8v251fZQoaAZoCWgPQwhO7KF9LMBwQJSGlFKUaBVNpQFoFkdAl9JA9ic5KnVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 980,
|
80 |
+
"n_steps": 256,
|
81 |
+
"gamma": 0.9991946267165749,
|
82 |
+
"gae_lambda": 0.9945492720131379,
|
83 |
+
"ent_coef": 1.5314230989597823e-05,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 1.023648644160728,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032b5ea6dc865a6e5154c64c80dd81306e8b9d510a6ce2bc0fd1600f1bc29a5e
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0454d38896f068542518f04b10ea3c5095cf66f8ff25fa8cdf32db4378d6fc62
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.92181387895272, "std_reward": 21.322671892854434, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T16:49:34.964109"}
|