fbaldassarri
commited on
Initial Upload
Browse files- README.md +84 -0
- config.json +54 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- quantization_config.json +24 -0
- special_tokens_map.json +41 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: falcon-llm-license
|
4 |
+
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- fr
|
8 |
+
- es
|
9 |
+
- pt
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
tags:
|
12 |
+
- causal-lm
|
13 |
+
- autoround
|
14 |
+
- auto-round
|
15 |
+
- intel-autoround
|
16 |
+
- woq
|
17 |
+
- intel
|
18 |
+
- pytorch
|
19 |
+
- falcon3
|
20 |
+
model_name: Falcon3 3B Instruct
|
21 |
+
base_model:
|
22 |
+
- tiiuae/Falcon3-3B-Instruct
|
23 |
+
inference: false
|
24 |
+
library_name: transformers
|
25 |
+
model_creator: tiiuae
|
26 |
+
prompt_template: '{prompt} '
|
27 |
+
quantized_by: fbaldassarri
|
28 |
+
---
|
29 |
+
|
30 |
+
## Model Information
|
31 |
+
|
32 |
+
Quantized version of [tiiuae/Falcon3-3B-Instruct](https://huggingface.co/tiiuae/Falcon3-3B-Instruct) using torch.float32 for quantization tuning.
|
33 |
+
- 4 bits (INT4)
|
34 |
+
- group size = 128
|
35 |
+
- Asymmetrical Quantization
|
36 |
+
- Method WoQ (AutoRound format)
|
37 |
+
|
38 |
+
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
|
39 |
+
|
40 |
+
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.4
|
41 |
+
|
42 |
+
Note: this INT4 version of Falcon3-3B-Instruct has been quantized to run inference through CPU.
|
43 |
+
|
44 |
+
## Replication Recipe
|
45 |
+
|
46 |
+
### Step 1 Install Requirements
|
47 |
+
|
48 |
+
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
|
49 |
+
|
50 |
+
```
|
51 |
+
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.4.tar.gz
|
52 |
+
tar -xvzf v0.4.4.tar.gz
|
53 |
+
cd auto-round-0.4.4
|
54 |
+
pip install -r requirements-cpu.txt --upgrade
|
55 |
+
```
|
56 |
+
|
57 |
+
### Step 2 Build Intel AutoRound wheel from sources
|
58 |
+
|
59 |
+
```
|
60 |
+
pip install -vvv --no-build-isolation -e .[cpu]
|
61 |
+
```
|
62 |
+
|
63 |
+
### Step 3 Script for Quantization
|
64 |
+
|
65 |
+
```
|
66 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
+
model_name = "tiiuae/Falcon3-3B-Instruct"
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
+
from auto_round import AutoRound
|
71 |
+
bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
|
72 |
+
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
73 |
+
autoround.quantize()
|
74 |
+
output_dir = "./AutoRound/tiiuae_Falcon3-3B-Instruct-autoround-int4-gs128-asym"
|
75 |
+
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
|
76 |
+
```
|
77 |
+
|
78 |
+
## License
|
79 |
+
|
80 |
+
[Falcon3 License](https://falconllm.tii.ae/falcon-terms-and-conditions.html)
|
81 |
+
|
82 |
+
## Disclaimer
|
83 |
+
|
84 |
+
This quantized model comes with no warranty. It has been developed only for research purposes.
|
config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tiiuae/Falcon3-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 11,
|
10 |
+
"head_dim": 256,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 9216,
|
15 |
+
"max_position_embeddings": 32768,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 22,
|
20 |
+
"num_key_value_heads": 4,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"quantization_config": {
|
23 |
+
"amp": false,
|
24 |
+
"autoround_version": "0.4.4",
|
25 |
+
"backend": "auto_round:exllamav2",
|
26 |
+
"batch_size": 4,
|
27 |
+
"bits": 4,
|
28 |
+
"data_type": "int",
|
29 |
+
"dataset": "NeelNanda/pile-10k",
|
30 |
+
"enable_minmax_tuning": true,
|
31 |
+
"enable_norm_bias_tuning": false,
|
32 |
+
"enable_quanted_input": true,
|
33 |
+
"gradient_accumulate_steps": 1,
|
34 |
+
"group_size": 128,
|
35 |
+
"iters": 200,
|
36 |
+
"low_gpu_mem_usage": false,
|
37 |
+
"lr": 0.005,
|
38 |
+
"minmax_lr": 0.005,
|
39 |
+
"nsamples": 128,
|
40 |
+
"quant_method": "intel/auto-round",
|
41 |
+
"scale_dtype": "torch.float16",
|
42 |
+
"seqlen": 512,
|
43 |
+
"sym": false,
|
44 |
+
"to_quant_block_names": null
|
45 |
+
},
|
46 |
+
"rms_norm_eps": 1e-06,
|
47 |
+
"rope_scaling": null,
|
48 |
+
"rope_theta": 1000042,
|
49 |
+
"tie_word_embeddings": false,
|
50 |
+
"torch_dtype": "float32",
|
51 |
+
"transformers_version": "4.48.0",
|
52 |
+
"use_cache": true,
|
53 |
+
"vocab_size": 131072
|
54 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 11,
|
4 |
+
"eos_token_id": 11,
|
5 |
+
"transformers_version": "4.48.0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b5d985f721779ec4e3ec0331d6452e2afd1e501a57eccf635b5fc1ad8b7d468
|
3 |
+
size 4482700120
|
quantization_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"sym": false,
|
5 |
+
"data_type": "int",
|
6 |
+
"enable_quanted_input": true,
|
7 |
+
"enable_minmax_tuning": true,
|
8 |
+
"seqlen": 512,
|
9 |
+
"batch_size": 4,
|
10 |
+
"scale_dtype": "torch.float16",
|
11 |
+
"lr": 0.005,
|
12 |
+
"minmax_lr": 0.005,
|
13 |
+
"gradient_accumulate_steps": 1,
|
14 |
+
"iters": 200,
|
15 |
+
"amp": false,
|
16 |
+
"nsamples": 128,
|
17 |
+
"low_gpu_mem_usage": false,
|
18 |
+
"to_quant_block_names": null,
|
19 |
+
"enable_norm_bias_tuning": false,
|
20 |
+
"dataset": "NeelNanda/pile-10k",
|
21 |
+
"autoround_version": "0.4.4",
|
22 |
+
"quant_method": "intel/auto-round",
|
23 |
+
"backend": "auto_round:exllamav2"
|
24 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
">>TITLE<<",
|
4 |
+
">>ABSTRACT<<",
|
5 |
+
">>INTRODUCTION<<",
|
6 |
+
">>SUMMARY<<",
|
7 |
+
">>COMMENT<<",
|
8 |
+
">>ANSWER<<",
|
9 |
+
">>QUESTION<<",
|
10 |
+
">>DOMAIN<<",
|
11 |
+
">>EMAIL_ADDRESS<<",
|
12 |
+
">>IP_ADDRESS<<",
|
13 |
+
"<|startoftext|>",
|
14 |
+
">>IP_ADDRESS_0<<",
|
15 |
+
">>IP_ADDRESS_1<<",
|
16 |
+
">>IP_ADDRESS_2<<",
|
17 |
+
">>IP_ADDRESS_3<<",
|
18 |
+
">>IP_ADDRESS_4<<",
|
19 |
+
">>IP_ADDRESS_5<<",
|
20 |
+
">>IP_ADDRESS_6<<",
|
21 |
+
">>IP_ADDRESS_7<<",
|
22 |
+
">>IP_ADDRESS_8<<",
|
23 |
+
">>IP_ADDRESS_9<<",
|
24 |
+
">>PASSWORD<<",
|
25 |
+
">>KEY<<"
|
26 |
+
],
|
27 |
+
"eos_token": {
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"pad_token": {
|
35 |
+
"content": "<|pad|>",
|
36 |
+
"lstrip": false,
|
37 |
+
"normalized": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"single_word": false
|
40 |
+
}
|
41 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|