fbaldassarri commited on
Commit
66c90e7
·
verified ·
1 Parent(s): 4bf9bb7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -14,8 +14,8 @@ tags:
14
  - safetensors
15
  - onnx
16
  - transformers.js
17
- model_name: SmolLM2 1.7B Instruct
18
- base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct
19
  inference: false
20
  model_creator: HuggingFaceTB
21
  pipeline_tag: text-generation
@@ -26,7 +26,7 @@ quantized_by: fbaldassarri
26
 
27
  ## Model Information
28
 
29
- Quantized version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) using torch.float32 for quantization tuning.
30
  - 8 bits (INT8)
31
  - group size = 128
32
  - Asymmetrical Quantization
@@ -36,7 +36,7 @@ Fast and low memory, 2-3X speedup (slight accuracy drop at W8G128)
36
 
37
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.5
38
 
39
- Note: this INT8 version of SmolLM2-1.7B-Instruct has been quantized to run inference through CPU.
40
 
41
  ## Replication Recipe
42
 
@@ -61,14 +61,14 @@ pip install -vvv --no-build-isolation -e .[cpu]
61
 
62
  ```
63
  from transformers import AutoModelForCausalLM, AutoTokenizer
64
- model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
65
  model = AutoModelForCausalLM.from_pretrained(model_name)
66
  tokenizer = AutoTokenizer.from_pretrained(model_name)
67
  from auto_round import AutoRound
68
  bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
69
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
70
  autoround.quantize()
71
- output_dir = "./AutoRound/HuggingFaceTB_SmolLM2-1.7B-Instruct-auto_round-int8-gs128-asym"
72
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
73
  ```
74
 
 
14
  - safetensors
15
  - onnx
16
  - transformers.js
17
+ model_name: SmolLM2 135M Instruct
18
+ base_model: HuggingFaceTB/SmolLM2-135M-Instruct
19
  inference: false
20
  model_creator: HuggingFaceTB
21
  pipeline_tag: text-generation
 
26
 
27
  ## Model Information
28
 
29
+ Quantized version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) using torch.float32 for quantization tuning.
30
  - 8 bits (INT8)
31
  - group size = 128
32
  - Asymmetrical Quantization
 
36
 
37
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.5
38
 
39
+ Note: this INT8 version of SmolLM2-135M-Instruct has been quantized to run inference through CPU.
40
 
41
  ## Replication Recipe
42
 
 
61
 
62
  ```
63
  from transformers import AutoModelForCausalLM, AutoTokenizer
64
+ model_name = "HuggingFaceTB/SmolLM2-135M-Instruct"
65
  model = AutoModelForCausalLM.from_pretrained(model_name)
66
  tokenizer = AutoTokenizer.from_pretrained(model_name)
67
  from auto_round import AutoRound
68
  bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
69
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
70
  autoround.quantize()
71
+ output_dir = "./AutoRound/HuggingFaceTB_SmolLM2-135M-Instruct-auto_round-int8-gs128-asym"
72
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
73
  ```
74