PEFT
Safetensors
fathom-llm commited on
Commit
02740d6
·
verified ·
1 Parent(s): a8760a2

Upload 11 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llm-jp/llm-jp-3-13b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llm-jp/llm-jp-3-13b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "q_proj",
25
+ "up_proj",
26
+ "k_proj",
27
+ "v_proj",
28
+ "o_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d8c9719c321f656a848a5c99228f8f9b677a2ea45acbecf9efc6f806a15741
3
+ size 500770656
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98bf44ff0cac5c1d012f123a01f0de8d025ce8e68e626a7f39fcff7085649962
3
+ size 1001863522
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c5dd7a6ce81622e2763863f4a49f914a920ddf300ddb5e1b6ca3a16ea25d578
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:718ece628fc1a523234e825c803af434bab736a5cb277a772ce3f07be7861d22
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<CLS|LLM-jp>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<MASK|LLM-jp>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<PAD|LLM-jp>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "<SEP|LLM-jp>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<MASK|LLM-jp>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<PAD|LLM-jp>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<CLS|LLM-jp>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<SEP|LLM-jp>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<EOD|LLM-jp>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ }
69
+ },
70
+ "bos_token": "<s>",
71
+ "clean_up_tokenization_spaces": false,
72
+ "cls_token": "<CLS|LLM-jp>",
73
+ "eod_token": "</s>",
74
+ "eos_token": "</s>",
75
+ "extra_ids": 0,
76
+ "mask_token": "<MASK|LLM-jp>",
77
+ "model_max_length": 4096,
78
+ "pad_token": "<PAD|LLM-jp>",
79
+ "padding_side": "right",
80
+ "sep_token": "<SEP|LLM-jp>",
81
+ "sp_model_kwargs": {},
82
+ "tokenizer_class": "PreTrainedTokenizerFast",
83
+ "unk_token": "<unk>"
84
+ }
trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.3522493384298735,
5
+ "eval_steps": 500,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.011761246692149369,
13
+ "grad_norm": 0.25049906969070435,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.1846,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.023522493384298737,
20
+ "grad_norm": 0.28385764360427856,
21
+ "learning_rate": 0.00019952830188679245,
22
+ "loss": 1.9496,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.035283740076448106,
27
+ "grad_norm": 0.27383577823638916,
28
+ "learning_rate": 0.0001990566037735849,
29
+ "loss": 2.003,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.047044986768597474,
34
+ "grad_norm": 0.3645761013031006,
35
+ "learning_rate": 0.00019858490566037736,
36
+ "loss": 1.9349,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.058806233460746836,
41
+ "grad_norm": 0.6317451596260071,
42
+ "learning_rate": 0.00019811320754716983,
43
+ "loss": 1.7642,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.07056748015289621,
48
+ "grad_norm": 0.18650729954242706,
49
+ "learning_rate": 0.00019764150943396227,
50
+ "loss": 1.9489,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.08232872684504558,
55
+ "grad_norm": 0.2123485505580902,
56
+ "learning_rate": 0.00019716981132075472,
57
+ "loss": 1.9835,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.09408997353719495,
62
+ "grad_norm": 0.2508566379547119,
63
+ "learning_rate": 0.00019669811320754718,
64
+ "loss": 1.8866,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.10585122022934432,
69
+ "grad_norm": 0.31404730677604675,
70
+ "learning_rate": 0.00019622641509433963,
71
+ "loss": 1.8954,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.11761246692149367,
76
+ "grad_norm": 0.5218461155891418,
77
+ "learning_rate": 0.00019575471698113207,
78
+ "loss": 1.7887,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.12937371361364305,
83
+ "grad_norm": 0.2055450826883316,
84
+ "learning_rate": 0.00019528301886792454,
85
+ "loss": 1.8669,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.14113496030579242,
90
+ "grad_norm": 0.22005008161067963,
91
+ "learning_rate": 0.000194811320754717,
92
+ "loss": 1.8794,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1528962069979418,
97
+ "grad_norm": 0.2914157807826996,
98
+ "learning_rate": 0.00019433962264150945,
99
+ "loss": 1.8953,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.16465745369009116,
104
+ "grad_norm": 0.303595632314682,
105
+ "learning_rate": 0.0001938679245283019,
106
+ "loss": 1.8921,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.17641870038224053,
111
+ "grad_norm": 0.6398317813873291,
112
+ "learning_rate": 0.00019339622641509433,
113
+ "loss": 1.8473,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.1881799470743899,
118
+ "grad_norm": 0.20719175040721893,
119
+ "learning_rate": 0.0001929245283018868,
120
+ "loss": 1.8451,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.19994119376653927,
125
+ "grad_norm": 0.21924979984760284,
126
+ "learning_rate": 0.00019245283018867927,
127
+ "loss": 1.9988,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.21170244045868863,
132
+ "grad_norm": 0.3456704914569855,
133
+ "learning_rate": 0.0001919811320754717,
134
+ "loss": 1.8011,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.22346368715083798,
139
+ "grad_norm": 0.3223501741886139,
140
+ "learning_rate": 0.00019150943396226415,
141
+ "loss": 1.8616,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.23522493384298734,
146
+ "grad_norm": 0.6237074136734009,
147
+ "learning_rate": 0.00019103773584905662,
148
+ "loss": 1.7474,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.2469861805351367,
153
+ "grad_norm": 0.19962406158447266,
154
+ "learning_rate": 0.00019056603773584906,
155
+ "loss": 1.9342,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2587474272272861,
160
+ "grad_norm": 0.23922637104988098,
161
+ "learning_rate": 0.0001900943396226415,
162
+ "loss": 1.8467,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.27050867391943545,
167
+ "grad_norm": 0.28077131509780884,
168
+ "learning_rate": 0.00018962264150943397,
169
+ "loss": 1.8587,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.28226992061158485,
174
+ "grad_norm": 0.3607043921947479,
175
+ "learning_rate": 0.00018915094339622644,
176
+ "loss": 1.7562,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.2940311673037342,
181
+ "grad_norm": 0.5218331217765808,
182
+ "learning_rate": 0.00018867924528301889,
183
+ "loss": 1.6972,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.3057924139958836,
188
+ "grad_norm": 0.22418326139450073,
189
+ "learning_rate": 0.00018820754716981133,
190
+ "loss": 1.9769,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.3175536606880329,
195
+ "grad_norm": 0.2506936192512512,
196
+ "learning_rate": 0.00018773584905660377,
197
+ "loss": 1.9306,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.3293149073801823,
202
+ "grad_norm": 0.2900485396385193,
203
+ "learning_rate": 0.00018726415094339624,
204
+ "loss": 1.8749,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.34107615407233166,
209
+ "grad_norm": 0.36592498421669006,
210
+ "learning_rate": 0.00018679245283018868,
211
+ "loss": 1.8406,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.35283740076448106,
216
+ "grad_norm": 0.7308420538902283,
217
+ "learning_rate": 0.00018632075471698115,
218
+ "loss": 1.7093,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.3645986474566304,
223
+ "grad_norm": 0.2798251509666443,
224
+ "learning_rate": 0.0001858490566037736,
225
+ "loss": 1.9505,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3763598941487798,
230
+ "grad_norm": 0.26333555579185486,
231
+ "learning_rate": 0.00018537735849056606,
232
+ "loss": 1.9265,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.38812114084092914,
237
+ "grad_norm": 0.34414273500442505,
238
+ "learning_rate": 0.0001849056603773585,
239
+ "loss": 1.8182,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.39988238753307853,
244
+ "grad_norm": 0.36221399903297424,
245
+ "learning_rate": 0.00018443396226415094,
246
+ "loss": 1.8312,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.4116436342252279,
251
+ "grad_norm": 0.7047480344772339,
252
+ "learning_rate": 0.00018396226415094339,
253
+ "loss": 1.743,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.42340488091737727,
258
+ "grad_norm": 0.2410486787557602,
259
+ "learning_rate": 0.00018349056603773585,
260
+ "loss": 1.9485,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.4351661276095266,
265
+ "grad_norm": 0.30608782172203064,
266
+ "learning_rate": 0.00018301886792452832,
267
+ "loss": 1.8891,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.44692737430167595,
272
+ "grad_norm": 0.32783588767051697,
273
+ "learning_rate": 0.00018254716981132077,
274
+ "loss": 1.8253,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.45868862099382535,
279
+ "grad_norm": 0.37461912631988525,
280
+ "learning_rate": 0.0001820754716981132,
281
+ "loss": 1.8013,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.4704498676859747,
286
+ "grad_norm": 0.7036715149879456,
287
+ "learning_rate": 0.00018160377358490568,
288
+ "loss": 1.7548,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.4822111143781241,
293
+ "grad_norm": 0.23341324925422668,
294
+ "learning_rate": 0.00018113207547169812,
295
+ "loss": 1.8426,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.4939723610702734,
300
+ "grad_norm": 0.29215207695961,
301
+ "learning_rate": 0.00018066037735849056,
302
+ "loss": 1.8704,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.5057336077624228,
307
+ "grad_norm": 0.37499144673347473,
308
+ "learning_rate": 0.00018018867924528303,
309
+ "loss": 1.7602,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.5174948544545722,
314
+ "grad_norm": 0.41657859086990356,
315
+ "learning_rate": 0.0001797169811320755,
316
+ "loss": 1.8011,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.5292561011467215,
321
+ "grad_norm": 0.6587756872177124,
322
+ "learning_rate": 0.00017924528301886794,
323
+ "loss": 1.6643,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.5410173478388709,
328
+ "grad_norm": 0.28515782952308655,
329
+ "learning_rate": 0.00017877358490566038,
330
+ "loss": 1.8037,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.5527785945310203,
335
+ "grad_norm": 0.2742769420146942,
336
+ "learning_rate": 0.00017830188679245282,
337
+ "loss": 1.8544,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.5645398412231697,
342
+ "grad_norm": 0.34683799743652344,
343
+ "learning_rate": 0.0001778301886792453,
344
+ "loss": 1.7819,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.576301087915319,
349
+ "grad_norm": 0.47388383746147156,
350
+ "learning_rate": 0.00017735849056603776,
351
+ "loss": 1.786,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.5880623346074684,
356
+ "grad_norm": 0.617415726184845,
357
+ "learning_rate": 0.0001768867924528302,
358
+ "loss": 1.7053,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.5998235812996178,
363
+ "grad_norm": 0.26782867312431335,
364
+ "learning_rate": 0.00017641509433962265,
365
+ "loss": 1.8774,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.6115848279917672,
370
+ "grad_norm": 0.3381577134132385,
371
+ "learning_rate": 0.00017594339622641511,
372
+ "loss": 1.8537,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.6233460746839165,
377
+ "grad_norm": 0.3665984272956848,
378
+ "learning_rate": 0.00017547169811320756,
379
+ "loss": 1.7465,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.6351073213760658,
384
+ "grad_norm": 0.46630290150642395,
385
+ "learning_rate": 0.000175,
386
+ "loss": 1.7545,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.6468685680682152,
391
+ "grad_norm": 0.7455469369888306,
392
+ "learning_rate": 0.00017452830188679247,
393
+ "loss": 1.6776,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.6586298147603646,
398
+ "grad_norm": 0.27579784393310547,
399
+ "learning_rate": 0.0001740566037735849,
400
+ "loss": 1.8787,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.6703910614525139,
405
+ "grad_norm": 0.3148879110813141,
406
+ "learning_rate": 0.00017358490566037738,
407
+ "loss": 1.8989,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.6821523081446633,
412
+ "grad_norm": 0.3903751075267792,
413
+ "learning_rate": 0.00017311320754716982,
414
+ "loss": 1.7702,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.6939135548368127,
419
+ "grad_norm": 0.4537353217601776,
420
+ "learning_rate": 0.00017264150943396226,
421
+ "loss": 1.758,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.7056748015289621,
426
+ "grad_norm": 0.7169495224952698,
427
+ "learning_rate": 0.0001721698113207547,
428
+ "loss": 1.5495,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.7174360482211114,
433
+ "grad_norm": 0.2942892909049988,
434
+ "learning_rate": 0.00017169811320754717,
435
+ "loss": 1.7981,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.7291972949132608,
440
+ "grad_norm": 0.39550286531448364,
441
+ "learning_rate": 0.00017122641509433964,
442
+ "loss": 1.7919,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.7409585416054102,
447
+ "grad_norm": 0.3948846459388733,
448
+ "learning_rate": 0.00017075471698113208,
449
+ "loss": 1.7793,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.7527197882975596,
454
+ "grad_norm": 0.4996489882469177,
455
+ "learning_rate": 0.00017028301886792453,
456
+ "loss": 1.6956,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.7644810349897089,
461
+ "grad_norm": 0.7511508464813232,
462
+ "learning_rate": 0.000169811320754717,
463
+ "loss": 1.6399,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.7762422816818583,
468
+ "grad_norm": 0.3312196433544159,
469
+ "learning_rate": 0.00016933962264150944,
470
+ "loss": 1.7876,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.7880035283740077,
475
+ "grad_norm": 0.40000253915786743,
476
+ "learning_rate": 0.00016886792452830188,
477
+ "loss": 1.8278,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.7997647750661571,
482
+ "grad_norm": 0.4055274724960327,
483
+ "learning_rate": 0.00016839622641509435,
484
+ "loss": 1.6638,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.8115260217583063,
489
+ "grad_norm": 0.48130497336387634,
490
+ "learning_rate": 0.00016792452830188682,
491
+ "loss": 1.7075,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.8232872684504557,
496
+ "grad_norm": 1.0582154989242554,
497
+ "learning_rate": 0.00016745283018867926,
498
+ "loss": 1.5322,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.8350485151426051,
503
+ "grad_norm": 0.31292250752449036,
504
+ "learning_rate": 0.0001669811320754717,
505
+ "loss": 1.8269,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.8468097618347545,
510
+ "grad_norm": 0.3395911157131195,
511
+ "learning_rate": 0.00016650943396226414,
512
+ "loss": 1.7563,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.8585710085269038,
517
+ "grad_norm": 0.4362980127334595,
518
+ "learning_rate": 0.0001660377358490566,
519
+ "loss": 1.6545,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.8703322552190532,
524
+ "grad_norm": 0.5648341774940491,
525
+ "learning_rate": 0.00016556603773584908,
526
+ "loss": 1.5902,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.8820935019112026,
531
+ "grad_norm": 0.8163714408874512,
532
+ "learning_rate": 0.00016509433962264152,
533
+ "loss": 1.6889,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.8938547486033519,
538
+ "grad_norm": 0.3610120117664337,
539
+ "learning_rate": 0.00016462264150943396,
540
+ "loss": 1.8061,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.9056159952955013,
545
+ "grad_norm": 0.40071502327919006,
546
+ "learning_rate": 0.00016415094339622643,
547
+ "loss": 1.7412,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.9173772419876507,
552
+ "grad_norm": 0.4744262993335724,
553
+ "learning_rate": 0.00016367924528301887,
554
+ "loss": 1.7553,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.9291384886798001,
559
+ "grad_norm": 0.5387608408927917,
560
+ "learning_rate": 0.00016320754716981132,
561
+ "loss": 1.6238,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.9408997353719494,
566
+ "grad_norm": 0.9463699460029602,
567
+ "learning_rate": 0.00016273584905660379,
568
+ "loss": 1.4965,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.9526609820640988,
573
+ "grad_norm": 0.39017385244369507,
574
+ "learning_rate": 0.00016226415094339625,
575
+ "loss": 1.7494,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.9644222287562482,
580
+ "grad_norm": 0.39241862297058105,
581
+ "learning_rate": 0.0001617924528301887,
582
+ "loss": 1.745,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.9761834754483976,
587
+ "grad_norm": 0.4188750982284546,
588
+ "learning_rate": 0.00016132075471698114,
589
+ "loss": 1.7072,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.9879447221405468,
594
+ "grad_norm": 0.54363614320755,
595
+ "learning_rate": 0.00016084905660377358,
596
+ "loss": 1.6571,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.9997059688326962,
601
+ "grad_norm": 0.8282334804534912,
602
+ "learning_rate": 0.00016037735849056605,
603
+ "loss": 1.5609,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 1.0114672155248456,
608
+ "grad_norm": 0.4861317574977875,
609
+ "learning_rate": 0.0001599056603773585,
610
+ "loss": 1.7427,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 1.023228462216995,
615
+ "grad_norm": 0.47034987807273865,
616
+ "learning_rate": 0.00015943396226415096,
617
+ "loss": 1.4911,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 1.0349897089091444,
622
+ "grad_norm": 0.8243444561958313,
623
+ "learning_rate": 0.0001589622641509434,
624
+ "loss": 1.242,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 1.0467509556012937,
629
+ "grad_norm": 0.8107286095619202,
630
+ "learning_rate": 0.00015849056603773587,
631
+ "loss": 1.1067,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 1.058512202293443,
636
+ "grad_norm": 0.9792178869247437,
637
+ "learning_rate": 0.0001580188679245283,
638
+ "loss": 0.9078,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 1.0702734489855925,
643
+ "grad_norm": 0.4514322280883789,
644
+ "learning_rate": 0.00015754716981132075,
645
+ "loss": 1.5328,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 1.0820346956777418,
650
+ "grad_norm": 0.5203831791877747,
651
+ "learning_rate": 0.0001570754716981132,
652
+ "loss": 1.4851,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 1.0937959423698913,
657
+ "grad_norm": 0.7015544176101685,
658
+ "learning_rate": 0.00015660377358490567,
659
+ "loss": 1.2215,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 1.1055571890620406,
664
+ "grad_norm": 0.7290483117103577,
665
+ "learning_rate": 0.00015613207547169813,
666
+ "loss": 1.0831,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 1.1173184357541899,
671
+ "grad_norm": 1.0971975326538086,
672
+ "learning_rate": 0.00015566037735849058,
673
+ "loss": 0.8673,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 1.1290796824463394,
678
+ "grad_norm": 0.5123384594917297,
679
+ "learning_rate": 0.00015518867924528302,
680
+ "loss": 1.5301,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 1.1408409291384887,
685
+ "grad_norm": 0.6260602474212646,
686
+ "learning_rate": 0.0001547169811320755,
687
+ "loss": 1.4956,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 1.152602175830638,
692
+ "grad_norm": 0.6829984188079834,
693
+ "learning_rate": 0.00015424528301886793,
694
+ "loss": 1.3128,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 1.1643634225227875,
699
+ "grad_norm": 0.7748053073883057,
700
+ "learning_rate": 0.00015377358490566037,
701
+ "loss": 1.1702,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 1.1761246692149367,
706
+ "grad_norm": 1.001291036605835,
707
+ "learning_rate": 0.00015330188679245284,
708
+ "loss": 0.8918,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 1.1878859159070863,
713
+ "grad_norm": 0.517902135848999,
714
+ "learning_rate": 0.0001528301886792453,
715
+ "loss": 1.4376,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 1.1996471625992355,
720
+ "grad_norm": 0.6000102758407593,
721
+ "learning_rate": 0.00015235849056603775,
722
+ "loss": 1.4512,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 1.2114084092913848,
727
+ "grad_norm": 0.762768566608429,
728
+ "learning_rate": 0.0001518867924528302,
729
+ "loss": 1.3248,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 1.2231696559835343,
734
+ "grad_norm": 0.9720354676246643,
735
+ "learning_rate": 0.00015141509433962263,
736
+ "loss": 1.0415,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 1.2349309026756836,
741
+ "grad_norm": 0.902864396572113,
742
+ "learning_rate": 0.0001509433962264151,
743
+ "loss": 0.8803,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 1.246692149367833,
748
+ "grad_norm": 0.5235794186592102,
749
+ "learning_rate": 0.00015047169811320757,
750
+ "loss": 1.4755,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 1.2584533960599824,
755
+ "grad_norm": 0.5898970365524292,
756
+ "learning_rate": 0.00015000000000000001,
757
+ "loss": 1.4036,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 1.2702146427521317,
762
+ "grad_norm": 0.9541133642196655,
763
+ "learning_rate": 0.00014952830188679246,
764
+ "loss": 1.197,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 1.281975889444281,
769
+ "grad_norm": 0.9920721054077148,
770
+ "learning_rate": 0.0001490566037735849,
771
+ "loss": 1.0743,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 1.2937371361364305,
776
+ "grad_norm": 1.3523385524749756,
777
+ "learning_rate": 0.00014858490566037737,
778
+ "loss": 0.8989,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 1.3054983828285798,
783
+ "grad_norm": 0.5665034055709839,
784
+ "learning_rate": 0.0001481132075471698,
785
+ "loss": 1.4432,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 1.3172596295207293,
790
+ "grad_norm": 0.6107054352760315,
791
+ "learning_rate": 0.00014764150943396228,
792
+ "loss": 1.356,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 1.3290208762128786,
797
+ "grad_norm": 0.7833155393600464,
798
+ "learning_rate": 0.00014716981132075472,
799
+ "loss": 1.2708,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 1.3407821229050279,
804
+ "grad_norm": 0.9629625082015991,
805
+ "learning_rate": 0.0001466981132075472,
806
+ "loss": 0.9813,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 1.3525433695971774,
811
+ "grad_norm": 1.0938910245895386,
812
+ "learning_rate": 0.00014622641509433963,
813
+ "loss": 0.8002,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.3643046162893266,
818
+ "grad_norm": 0.5895722508430481,
819
+ "learning_rate": 0.00014575471698113207,
820
+ "loss": 1.469,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 1.3760658629814762,
825
+ "grad_norm": 0.6274592280387878,
826
+ "learning_rate": 0.00014528301886792451,
827
+ "loss": 1.2954,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 1.3878271096736254,
832
+ "grad_norm": 0.748171329498291,
833
+ "learning_rate": 0.00014481132075471698,
834
+ "loss": 1.1003,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 1.3995883563657747,
839
+ "grad_norm": 1.0281026363372803,
840
+ "learning_rate": 0.00014433962264150945,
841
+ "loss": 1.0006,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 1.411349603057924,
846
+ "grad_norm": 1.0714832544326782,
847
+ "learning_rate": 0.0001438679245283019,
848
+ "loss": 0.8439,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 1.4231108497500735,
853
+ "grad_norm": 0.6404314637184143,
854
+ "learning_rate": 0.00014339622641509434,
855
+ "loss": 1.4463,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 1.4348720964422228,
860
+ "grad_norm": 0.6800934672355652,
861
+ "learning_rate": 0.0001429245283018868,
862
+ "loss": 1.2484,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 1.4466333431343723,
867
+ "grad_norm": 0.8627371191978455,
868
+ "learning_rate": 0.00014245283018867925,
869
+ "loss": 1.1863,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 1.4583945898265216,
874
+ "grad_norm": 1.0996595621109009,
875
+ "learning_rate": 0.0001419811320754717,
876
+ "loss": 0.9519,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 1.4701558365186709,
881
+ "grad_norm": 1.1529676914215088,
882
+ "learning_rate": 0.00014150943396226416,
883
+ "loss": 0.8407,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 1.4819170832108204,
888
+ "grad_norm": 0.611027717590332,
889
+ "learning_rate": 0.00014103773584905663,
890
+ "loss": 1.3786,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 1.4936783299029697,
895
+ "grad_norm": 0.7889626026153564,
896
+ "learning_rate": 0.00014056603773584907,
897
+ "loss": 1.2603,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.5054395765951192,
902
+ "grad_norm": 0.8136641979217529,
903
+ "learning_rate": 0.0001400943396226415,
904
+ "loss": 1.0535,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.5172008232872685,
909
+ "grad_norm": 1.0993061065673828,
910
+ "learning_rate": 0.00013962264150943395,
911
+ "loss": 0.9192,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 1.5289620699794177,
916
+ "grad_norm": 1.2532891035079956,
917
+ "learning_rate": 0.00013915094339622642,
918
+ "loss": 0.8772,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 1.540723316671567,
923
+ "grad_norm": 0.6979594826698303,
924
+ "learning_rate": 0.0001386792452830189,
925
+ "loss": 1.3564,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 1.5524845633637165,
930
+ "grad_norm": 0.6345073580741882,
931
+ "learning_rate": 0.00013820754716981133,
932
+ "loss": 1.235,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 1.564245810055866,
937
+ "grad_norm": 1.0022692680358887,
938
+ "learning_rate": 0.00013773584905660377,
939
+ "loss": 1.0533,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 1.5760070567480153,
944
+ "grad_norm": 1.0487345457077026,
945
+ "learning_rate": 0.00013726415094339624,
946
+ "loss": 0.9879,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 1.5877683034401646,
951
+ "grad_norm": 1.3332520723342896,
952
+ "learning_rate": 0.00013679245283018868,
953
+ "loss": 0.8568,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 1.599529550132314,
958
+ "grad_norm": 0.6801854968070984,
959
+ "learning_rate": 0.00013632075471698113,
960
+ "loss": 1.3149,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 1.6112907968244634,
965
+ "grad_norm": 0.7094405293464661,
966
+ "learning_rate": 0.0001358490566037736,
967
+ "loss": 1.2843,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 1.623052043516613,
972
+ "grad_norm": 0.7568113803863525,
973
+ "learning_rate": 0.00013537735849056606,
974
+ "loss": 1.1169,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 1.6348132902087622,
979
+ "grad_norm": 1.1939420700073242,
980
+ "learning_rate": 0.0001349056603773585,
981
+ "loss": 0.8441,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 1.6465745369009115,
986
+ "grad_norm": 1.4502966403961182,
987
+ "learning_rate": 0.00013443396226415095,
988
+ "loss": 0.801,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 1.6583357835930608,
993
+ "grad_norm": 0.6542213559150696,
994
+ "learning_rate": 0.0001339622641509434,
995
+ "loss": 1.4153,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 1.6700970302852103,
1000
+ "grad_norm": 0.7604705691337585,
1001
+ "learning_rate": 0.00013349056603773586,
1002
+ "loss": 1.25,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 1.6818582769773596,
1007
+ "grad_norm": 0.8076483607292175,
1008
+ "learning_rate": 0.0001330188679245283,
1009
+ "loss": 1.1673,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 1.693619523669509,
1014
+ "grad_norm": 0.9957693815231323,
1015
+ "learning_rate": 0.00013254716981132077,
1016
+ "loss": 0.9437,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 1.7053807703616584,
1021
+ "grad_norm": 1.2569739818572998,
1022
+ "learning_rate": 0.0001320754716981132,
1023
+ "loss": 0.7948,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 1.7171420170538076,
1028
+ "grad_norm": 0.8244763016700745,
1029
+ "learning_rate": 0.00013160377358490568,
1030
+ "loss": 1.3546,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 1.728903263745957,
1035
+ "grad_norm": 0.8371909856796265,
1036
+ "learning_rate": 0.00013113207547169812,
1037
+ "loss": 1.2031,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 1.7406645104381064,
1042
+ "grad_norm": 1.203465223312378,
1043
+ "learning_rate": 0.00013066037735849056,
1044
+ "loss": 1.0183,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 1.752425757130256,
1049
+ "grad_norm": 1.2281197309494019,
1050
+ "learning_rate": 0.000130188679245283,
1051
+ "loss": 0.9311,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 1.7641870038224052,
1056
+ "grad_norm": 1.3259741067886353,
1057
+ "learning_rate": 0.00012971698113207548,
1058
+ "loss": 0.872,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 1.7759482505145545,
1063
+ "grad_norm": 0.7928496599197388,
1064
+ "learning_rate": 0.00012924528301886794,
1065
+ "loss": 1.3436,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 1.7877094972067038,
1070
+ "grad_norm": 0.8125369548797607,
1071
+ "learning_rate": 0.00012877358490566039,
1072
+ "loss": 1.0189,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 1.7994707438988533,
1077
+ "grad_norm": 1.0345025062561035,
1078
+ "learning_rate": 0.00012830188679245283,
1079
+ "loss": 1.0006,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 1.8112319905910026,
1084
+ "grad_norm": 0.8656748533248901,
1085
+ "learning_rate": 0.0001278301886792453,
1086
+ "loss": 0.8927,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 1.822993237283152,
1091
+ "grad_norm": 1.12923264503479,
1092
+ "learning_rate": 0.00012735849056603774,
1093
+ "loss": 0.7717,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 1.8347544839753014,
1098
+ "grad_norm": 0.898140549659729,
1099
+ "learning_rate": 0.00012688679245283018,
1100
+ "loss": 1.2768,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 1.8465157306674507,
1105
+ "grad_norm": 0.748009204864502,
1106
+ "learning_rate": 0.00012641509433962265,
1107
+ "loss": 1.1579,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 1.8582769773596,
1112
+ "grad_norm": 1.3326165676116943,
1113
+ "learning_rate": 0.00012594339622641512,
1114
+ "loss": 0.973,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 1.8700382240517495,
1119
+ "grad_norm": 0.9244058132171631,
1120
+ "learning_rate": 0.00012547169811320756,
1121
+ "loss": 0.929,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 1.881799470743899,
1126
+ "grad_norm": 1.3473211526870728,
1127
+ "learning_rate": 0.000125,
1128
+ "loss": 0.7777,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 1.8935607174360483,
1133
+ "grad_norm": 0.8593601584434509,
1134
+ "learning_rate": 0.00012452830188679244,
1135
+ "loss": 1.327,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 1.9053219641281975,
1140
+ "grad_norm": 0.8441507816314697,
1141
+ "learning_rate": 0.0001240566037735849,
1142
+ "loss": 1.1585,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 1.9170832108203468,
1147
+ "grad_norm": 0.908469557762146,
1148
+ "learning_rate": 0.00012358490566037738,
1149
+ "loss": 0.9916,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 1.9288444575124963,
1154
+ "grad_norm": 1.1003684997558594,
1155
+ "learning_rate": 0.00012311320754716982,
1156
+ "loss": 0.7808,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 1.9406057042046458,
1161
+ "grad_norm": 1.2000435590744019,
1162
+ "learning_rate": 0.00012264150943396227,
1163
+ "loss": 0.847,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 1.9523669508967951,
1168
+ "grad_norm": 0.7908065915107727,
1169
+ "learning_rate": 0.0001221698113207547,
1170
+ "loss": 1.2671,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 1.9641281975889444,
1175
+ "grad_norm": 0.8809382319450378,
1176
+ "learning_rate": 0.00012169811320754718,
1177
+ "loss": 1.1279,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 1.9758894442810937,
1182
+ "grad_norm": 1.1937824487686157,
1183
+ "learning_rate": 0.00012122641509433963,
1184
+ "loss": 0.8854,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 1.9876506909732432,
1189
+ "grad_norm": 1.0509068965911865,
1190
+ "learning_rate": 0.00012075471698113207,
1191
+ "loss": 0.7986,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 1.9994119376653925,
1196
+ "grad_norm": 1.2940934896469116,
1197
+ "learning_rate": 0.00012028301886792453,
1198
+ "loss": 0.8177,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 2.011173184357542,
1203
+ "grad_norm": 1.00706148147583,
1204
+ "learning_rate": 0.000119811320754717,
1205
+ "loss": 0.9009,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 2.0229344310496913,
1210
+ "grad_norm": 0.7884982824325562,
1211
+ "learning_rate": 0.00011933962264150944,
1212
+ "loss": 0.5944,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 2.0346956777418406,
1217
+ "grad_norm": 0.8072102069854736,
1218
+ "learning_rate": 0.00011886792452830188,
1219
+ "loss": 0.4579,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 2.04645692443399,
1224
+ "grad_norm": 1.0868206024169922,
1225
+ "learning_rate": 0.00011839622641509434,
1226
+ "loss": 0.3714,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 2.0582181711261396,
1231
+ "grad_norm": 1.2487127780914307,
1232
+ "learning_rate": 0.00011792452830188681,
1233
+ "loss": 0.2964,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 2.069979417818289,
1238
+ "grad_norm": 0.8450261354446411,
1239
+ "learning_rate": 0.00011745283018867925,
1240
+ "loss": 0.8774,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 2.081740664510438,
1245
+ "grad_norm": 0.8103846311569214,
1246
+ "learning_rate": 0.0001169811320754717,
1247
+ "loss": 0.6733,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 2.0935019112025874,
1252
+ "grad_norm": 0.7691318392753601,
1253
+ "learning_rate": 0.00011650943396226415,
1254
+ "loss": 0.5036,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 2.1052631578947367,
1259
+ "grad_norm": 0.8625450134277344,
1260
+ "learning_rate": 0.00011603773584905662,
1261
+ "loss": 0.33,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 2.117024404586886,
1266
+ "grad_norm": 1.036942481994629,
1267
+ "learning_rate": 0.00011556603773584907,
1268
+ "loss": 0.3417,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 2.1287856512790357,
1273
+ "grad_norm": 0.7786136269569397,
1274
+ "learning_rate": 0.00011509433962264151,
1275
+ "loss": 0.7165,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 2.140546897971185,
1280
+ "grad_norm": 0.7121214866638184,
1281
+ "learning_rate": 0.00011462264150943395,
1282
+ "loss": 0.5809,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 2.1523081446633343,
1287
+ "grad_norm": 0.8065999150276184,
1288
+ "learning_rate": 0.00011415094339622642,
1289
+ "loss": 0.4644,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 2.1640693913554836,
1294
+ "grad_norm": 1.0368797779083252,
1295
+ "learning_rate": 0.00011367924528301888,
1296
+ "loss": 0.3668,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 2.175830638047633,
1301
+ "grad_norm": 0.7784335613250732,
1302
+ "learning_rate": 0.00011320754716981132,
1303
+ "loss": 0.2946,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 2.1875918847397826,
1308
+ "grad_norm": 1.0500203371047974,
1309
+ "learning_rate": 0.00011273584905660378,
1310
+ "loss": 0.8046,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 2.199353131431932,
1315
+ "grad_norm": 0.8676533699035645,
1316
+ "learning_rate": 0.00011226415094339624,
1317
+ "loss": 0.6096,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 2.211114378124081,
1322
+ "grad_norm": 0.8250516057014465,
1323
+ "learning_rate": 0.00011179245283018869,
1324
+ "loss": 0.4479,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 2.2228756248162305,
1329
+ "grad_norm": 1.0254476070404053,
1330
+ "learning_rate": 0.00011132075471698113,
1331
+ "loss": 0.3672,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 2.2346368715083798,
1336
+ "grad_norm": 0.9448462128639221,
1337
+ "learning_rate": 0.00011084905660377358,
1338
+ "loss": 0.2956,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 2.2463981182005295,
1343
+ "grad_norm": 0.9094712138175964,
1344
+ "learning_rate": 0.00011037735849056605,
1345
+ "loss": 0.8546,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 2.2581593648926788,
1350
+ "grad_norm": 0.7168066501617432,
1351
+ "learning_rate": 0.0001099056603773585,
1352
+ "loss": 0.6113,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 2.269920611584828,
1357
+ "grad_norm": 0.9491825699806213,
1358
+ "learning_rate": 0.00010943396226415095,
1359
+ "loss": 0.4896,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 2.2816818582769773,
1364
+ "grad_norm": 0.9781097173690796,
1365
+ "learning_rate": 0.00010896226415094339,
1366
+ "loss": 0.3119,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 2.2934431049691266,
1371
+ "grad_norm": 1.6303428411483765,
1372
+ "learning_rate": 0.00010849056603773586,
1373
+ "loss": 0.3224,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 2.305204351661276,
1378
+ "grad_norm": 0.9339887499809265,
1379
+ "learning_rate": 0.00010801886792452832,
1380
+ "loss": 0.7914,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 2.3169655983534256,
1385
+ "grad_norm": 0.8690701127052307,
1386
+ "learning_rate": 0.00010754716981132076,
1387
+ "loss": 0.5327,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 2.328726845045575,
1392
+ "grad_norm": 0.8797821998596191,
1393
+ "learning_rate": 0.0001070754716981132,
1394
+ "loss": 0.3846,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 2.340488091737724,
1399
+ "grad_norm": 1.1787986755371094,
1400
+ "learning_rate": 0.00010660377358490567,
1401
+ "loss": 0.3308,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 2.3522493384298735,
1406
+ "grad_norm": 1.682032585144043,
1407
+ "learning_rate": 0.00010613207547169812,
1408
+ "loss": 0.3173,
1409
+ "step": 2000
1410
+ }
1411
+ ],
1412
+ "logging_steps": 10,
1413
+ "max_steps": 4250,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 5,
1416
+ "save_steps": 100,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": false
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 2.9950155919985664e+17,
1430
+ "train_batch_size": 2,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:820fa115997a6ace1b22322fa3966d80ddb8d654eebd9b308d77ceafd9347eea
3
+ size 5560