Update README.md
Browse files
README.md
CHANGED
|
@@ -1,7 +1,106 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: fairseq
|
| 3 |
+
task: audio-to-audio
|
| 4 |
+
tags:
|
| 5 |
+
- fairseq
|
| 6 |
+
- audio
|
| 7 |
+
- audio-to-audio
|
| 8 |
+
- speech-to-speech-translation
|
| 9 |
|
| 10 |
+
datasets:
|
| 11 |
+
- mtedx
|
| 12 |
+
- covost2
|
| 13 |
+
- europarl_st
|
| 14 |
+
- voxpopuli
|
| 15 |
+
widget:
|
| 16 |
+
- example_title: Common Voice sample 1
|
| 17 |
+
src: https://huggingface.co/facebook/xm_transformer_600m-es_en-multi_domain/resolve/main/common_voice_es_19966634.flac
|
| 18 |
+
---
|
| 19 |
+
## xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022
|
| 20 |
|
| 21 |
+
Speech-to-speech translation model from fairseq S2UT ([paper](https://arxiv.org/abs/2204.02967)/[code](https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md)):
|
| 22 |
+
- Spanish-English
|
| 23 |
+
- Trained on mTEDx, CoVoST 2, Europarl-ST and VoxPopuli
|
| 24 |
+
- Speech synthesis with [facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur](https://huggingface.co/facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur)
|
| 25 |
|
| 26 |
+
## Usage
|
| 27 |
+
```python
|
| 28 |
+
import json
|
| 29 |
+
import os
|
| 30 |
+
from pathlib import Path
|
| 31 |
|
| 32 |
+
import IPython.display as ipd
|
| 33 |
+
from fairseq import hub_utils
|
| 34 |
+
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
| 35 |
+
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
|
| 36 |
+
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
|
| 37 |
+
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface
|
| 38 |
+
|
| 39 |
+
from huggingface_hub import snapshot_download
|
| 40 |
+
import torchaudio
|
| 41 |
+
|
| 42 |
+
cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE")
|
| 43 |
+
|
| 44 |
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
| 45 |
+
"facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022",
|
| 46 |
+
arg_overrides={"config_yaml": "config.yaml", "task": "speech_to_text"},
|
| 47 |
+
cache_dir=cache_dir,
|
| 48 |
+
)
|
| 49 |
+
#model = models[0].cpu()
|
| 50 |
+
#cfg["task"].cpu = True
|
| 51 |
+
generator = task.build_generator([model], cfg)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# requires 16000Hz mono channel audio
|
| 55 |
+
audio, _ = torchaudio.load("/path/to/an/audio/file")
|
| 56 |
+
|
| 57 |
+
sample = S2THubInterface.get_model_input(task, audio)
|
| 58 |
+
unit = S2THubInterface.get_prediction(task, model, generator, sample)
|
| 59 |
+
|
| 60 |
+
# speech synthesis
|
| 61 |
+
library_name = "fairseq"
|
| 62 |
+
cache_dir = (
|
| 63 |
+
cache_dir or (Path.home() / ".cache" / library_name).as_posix()
|
| 64 |
+
)
|
| 65 |
+
cache_dir = snapshot_download(
|
| 66 |
+
f"facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", cache_dir=cache_dir, library_name=library_name
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
x = hub_utils.from_pretrained(
|
| 70 |
+
cache_dir,
|
| 71 |
+
"model.pt",
|
| 72 |
+
".",
|
| 73 |
+
archive_map=CodeHiFiGANVocoder.hub_models(),
|
| 74 |
+
config_yaml="config.json",
|
| 75 |
+
fp16=False,
|
| 76 |
+
is_vocoder=True,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
with open(f"{x['args']['data']}/config.json") as f:
|
| 80 |
+
vocoder_cfg = json.load(f)
|
| 81 |
+
assert (
|
| 82 |
+
len(x["args"]["model_path"]) == 1
|
| 83 |
+
), "Too many vocoder models in the input"
|
| 84 |
+
|
| 85 |
+
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
|
| 86 |
+
tts_model = VocoderHubInterface(vocoder_cfg, vocoder)
|
| 87 |
+
|
| 88 |
+
tts_sample = tts_model.get_model_input(unit)
|
| 89 |
+
wav, sr = tts_model.get_prediction(tts_sample)
|
| 90 |
+
|
| 91 |
+
ipd.Audio(wav, rate=sr)
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## Citation
|
| 95 |
+
```bibtex
|
| 96 |
+
@misc{https://doi.org/10.48550/arxiv.2204.02967,
|
| 97 |
+
doi = {10.48550/ARXIV.2204.02967},
|
| 98 |
+
url = {https://arxiv.org/abs/2204.02967},
|
| 99 |
+
author = {Popuri, Sravya and Chen, Peng-Jen and Wang, Changhan and Pino, Juan and Adi, Yossi and Gu, Jiatao and Hsu, Wei-Ning and Lee, Ann},
|
| 100 |
+
keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
|
| 101 |
+
title = {Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation},
|
| 102 |
+
publisher = {arXiv},
|
| 103 |
+
year = {2022},
|
| 104 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
| 105 |
+
}
|
| 106 |
+
```
|