Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ license: apache-2.0
|
|
5 |
# Model Details
|
6 |
|
7 |
Perception Encoder (PE) is a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. It was introduced in "[Perception Encoder: The best visual embeddings
|
8 |
-
are
|
9 |
|
10 |
**Model Developer**: Meta
|
11 |
|
@@ -16,22 +16,21 @@ are hidden inside the network](https://TBC)".
|
|
16 |
|
17 |
| Scale | Tower | Params | Width | Depth | MLP | Heads | CLIP Dim | Resolution | Patch Size | Text Context Length |
|
18 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
19 |
-
| **B** | Vision | 0.09B | 768 | 12 | 3072 | 12 | 1024 |
|
20 |
-
| | Text | 0.31B | 1024 | 24 | 4096 | 16 | 1024 |
|
21 |
| **L** | Vision | 0.32B | 1024 | 24 | 4096 | 16 | 1024 | 336 | 14 | 32 |
|
22 |
| | Text | 0.31B | 1024 | 24 | 4096 | 16 | 1024 | 336 | 14 | 32 |
|
23 |
-
| **G** | Vision | 1.88B | 1536 | 50 | 8960 | 16 | 1280 |
|
24 |
-
| | Text | 0.47B | 1280 | 24 | 5120 | 20 | 1280 |
|
25 |
|
26 |
|
27 |
# How to use
|
28 |
|
29 |
## PE codebase
|
30 |
-
We provide the pretraining code in https://github.com/
|
31 |
-
|
32 |
```shell
|
33 |
-
git clone https://github.com/
|
34 |
-
cd
|
35 |
conda create --name occhi-env python=3.12
|
36 |
conda activate occhi-env
|
37 |
# Install PyTorch
|
@@ -46,8 +45,10 @@ pip install -e .
|
|
46 |
import torch
|
47 |
from occhi.vision_encoder.factory import create_model_and_transforms, get_tokenizer
|
48 |
from PIL import Image
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
model, _, preprocess = create_model_and_transforms(
|
52 |
model_name,
|
53 |
pretrained=pretrained,
|
@@ -56,40 +57,31 @@ model = model.cuda()
|
|
56 |
tokenizer = get_tokenizer(model_name)
|
57 |
image = preprocess(Image.open("docs/cat.png")).unsqueeze(0).cuda()
|
58 |
text = tokenizer(["a diagram", "a dog", "a cat"]).cuda()
|
|
|
59 |
with torch.no_grad(), torch.autocast("cuda"):
|
60 |
image_features = model.encode_image(image)
|
61 |
text_features = model.encode_text(text)
|
62 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
63 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
64 |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
|
|
65 |
print("Label probs:", text_probs) # prints: [[0.0, 0.0, 1.0]]
|
66 |
```
|
67 |
-
|
68 |
You can find more details in the GitHub repo.
|
69 |
-
|
70 |
-
|
71 |
# Evaluation
|
72 |
-
We evaluate the pretrained
|
73 |
-
|
74 |
Here is the table in Markdown format:
|
75 |
-
|
76 |
## Zero-Shot Image Results
|
77 |
-
|
78 |
<img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_zeroshot_image.png" style="width: 100%; margin: 0;" />
|
79 |
-
|
80 |
## Zero-Shot Video Results
|
81 |
-
|
82 |
<img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_zeroshot_video.png" style="width: 90%; margin: 0" />
|
83 |
-
|
84 |
-
|
85 |
# Citation
|
86 |
-
|
87 |
If you find our code useful for your research, please consider citing:
|
88 |
|
89 |
@article{PE,
|
90 |
-
title={Perception Encoder},
|
91 |
author={},
|
92 |
journal={arXiv:xxx.xxxxx},
|
93 |
year={2025}
|
94 |
}
|
95 |
-
|
|
|
5 |
# Model Details
|
6 |
|
7 |
Perception Encoder (PE) is a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. It was introduced in "[Perception Encoder: The best visual embeddings
|
8 |
+
are not at the output of the network](https://ai.meta.com/research/publications/perception-encoder-the-best-visual-embeddings-are-not-at-the-output-of-the-network/)".
|
9 |
|
10 |
**Model Developer**: Meta
|
11 |
|
|
|
16 |
|
17 |
| Scale | Tower | Params | Width | Depth | MLP | Heads | CLIP Dim | Resolution | Patch Size | Text Context Length |
|
18 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
19 |
+
| **B** | Vision | 0.09B | 768 | 12 | 3072 | 12 | 1024 | 224 | 16 | 32 |
|
20 |
+
| | Text | 0.31B | 1024 | 24 | 4096 | 16 | 1024 | 224 | 16 | 32 |
|
21 |
| **L** | Vision | 0.32B | 1024 | 24 | 4096 | 16 | 1024 | 336 | 14 | 32 |
|
22 |
| | Text | 0.31B | 1024 | 24 | 4096 | 16 | 1024 | 336 | 14 | 32 |
|
23 |
+
| **G** | Vision | 1.88B | 1536 | 50 | 8960 | 16 | 1280 | 448 | 14 | 72 |
|
24 |
+
| | Text | 0.47B | 1280 | 24 | 5120 | 20 | 1280 | 448 | 14 | 72 |
|
25 |
|
26 |
|
27 |
# How to use
|
28 |
|
29 |
## PE codebase
|
30 |
+
We provide the pretraining code in https://github.com/facebookresearch/perception_models
|
|
|
31 |
```shell
|
32 |
+
git clone https://github.com/facebookresearch/perception_models.git
|
33 |
+
cd perception_models
|
34 |
conda create --name occhi-env python=3.12
|
35 |
conda activate occhi-env
|
36 |
# Install PyTorch
|
|
|
45 |
import torch
|
46 |
from occhi.vision_encoder.factory import create_model_and_transforms, get_tokenizer
|
47 |
from PIL import Image
|
48 |
+
|
49 |
+
model_name = 'PEv1-L14-336'
|
50 |
+
pretrained='PATH_TO_PE_Core_L14_336'
|
51 |
+
|
52 |
model, _, preprocess = create_model_and_transforms(
|
53 |
model_name,
|
54 |
pretrained=pretrained,
|
|
|
57 |
tokenizer = get_tokenizer(model_name)
|
58 |
image = preprocess(Image.open("docs/cat.png")).unsqueeze(0).cuda()
|
59 |
text = tokenizer(["a diagram", "a dog", "a cat"]).cuda()
|
60 |
+
|
61 |
with torch.no_grad(), torch.autocast("cuda"):
|
62 |
image_features = model.encode_image(image)
|
63 |
text_features = model.encode_text(text)
|
64 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
65 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
66 |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
67 |
+
|
68 |
print("Label probs:", text_probs) # prints: [[0.0, 0.0, 1.0]]
|
69 |
```
|
|
|
70 |
You can find more details in the GitHub repo.
|
|
|
|
|
71 |
# Evaluation
|
72 |
+
We evaluate the pretrained PE models on Zero-shot Common Sense Reasoning tasks
|
|
|
73 |
Here is the table in Markdown format:
|
|
|
74 |
## Zero-Shot Image Results
|
|
|
75 |
<img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_zeroshot_image.png" style="width: 100%; margin: 0;" />
|
|
|
76 |
## Zero-Shot Video Results
|
|
|
77 |
<img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_zeroshot_video.png" style="width: 90%; margin: 0" />
|
|
|
|
|
78 |
# Citation
|
|
|
79 |
If you find our code useful for your research, please consider citing:
|
80 |
|
81 |
@article{PE,
|
82 |
+
title={Perception Encoder: The best visual embeddings are not at the output of the network},
|
83 |
author={},
|
84 |
journal={arXiv:xxx.xxxxx},
|
85 |
year={2025}
|
86 |
}
|
87 |
+
|