Upload folder using huggingface_hub
Browse files- config.json +34 -0
- generation_config.json +6 -0
- global_step845/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step845/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step845/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step845/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- scheduler.pt +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +194 -0
- trainer_state.json +1255 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/proj/memorization/FK/warrior/model_weights/deepseek-coder-6.7b-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 32013,
|
9 |
+
"eos_token_id": 32021,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 11008,
|
15 |
+
"max_position_embeddings": 16384,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 32,
|
20 |
+
"num_key_value_heads": 32,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-06,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 4.0,
|
25 |
+
"rope_type": "linear",
|
26 |
+
"type": "linear"
|
27 |
+
},
|
28 |
+
"rope_theta": 100000,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "bfloat16",
|
31 |
+
"transformers_version": "4.46.1",
|
32 |
+
"use_cache": false,
|
33 |
+
"vocab_size": 32256
|
34 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 32013,
|
4 |
+
"eos_token_id": 32021,
|
5 |
+
"transformers_version": "4.46.1"
|
6 |
+
}
|
global_step845/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ccefdfe826d745fe932138070b0c28fd1bd878e46f10aa5a6fd9a6d758c3bb4
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86d68ea212a0139e2bc64b1b69dbd0df142d4f1d842981a2eca90e71a5cf2b8d
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d25ffe04cc2c287e3127f1aa82636e8e05159f8beb5af4a1356e52e1485232ea
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70cde4d07d796c36e8b46f02a8421e515d3ac437278106289d127da3fd05436b
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55e8e12cf991b48a9cac61cd55df77a1388e4e864fdb27c3bad5004fb413ce23
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0fde39be3aa5ca691815f343e8f95728494eb43fe3b3bbf6331cf6539965461
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a118611fe77d30cce932b5db4295b6f765df16126f4ecca7d296bb3857d12d06
|
3 |
+
size 10110774092
|
global_step845/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f3bf700c7517f78586cff8be96f0348ecc298f08675e3ba440b628c4c16fbaa
|
3 |
+
size 10110774092
|
global_step845/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00c670b34855ce48d046252cebca25737de74c89fa95c338e3c2f04dc45c0e98
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20f6dc5f51e30dde964227dafabb3826597e062ce4f0f4fe4dd809fa66054dd3
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85d93e246a780702d227587bcc0db822d5b5e33b37b51ff77de98ce2d64c8a16
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c5cda5a571b28b183f1ae5bbd12254a96d94b5dcdc195e703242482e2b5aec4
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7d3a3a79a849947f7eacc4df8922719ad6bf28b9ef62d882f5fd8f4e52298ab
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0205119767e816464210965642d7d02a0de7dade8bd98a4301cd1c47795b5399
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e431dd3a59e8f2a1119123b6f8cad74ecda28f3ac32c77c4992ac817ecdb0d80
|
3 |
+
size 150693
|
global_step845/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fffc3ab12332875c98030184cdcbf151d8ccab74ee300a5199d075ca9ac1b621
|
3 |
+
size 150693
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step845
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c40b50f38df6d2adb7ea1955b2f47b186f6fec960ea1085113b403cf88ab1fc
|
3 |
+
size 4941082504
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88c4c00831d451cecc8c1db7863da78f7e843fe6552d600b729436c686839e90
|
3 |
+
size 4947390880
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4605e8caf2c02e20f56574afb3090fc5137da316e511b98884e133423529cbee
|
3 |
+
size 3592585968
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13481025536
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:037fd64165ffd3201e22e4503898a667abbe1bfd941762d4e7bce996d8cdac74
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|EOT|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"32000": {
|
7 |
+
"content": "õ",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": false
|
13 |
+
},
|
14 |
+
"32001": {
|
15 |
+
"content": "÷",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": false
|
21 |
+
},
|
22 |
+
"32002": {
|
23 |
+
"content": "Á",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"32003": {
|
31 |
+
"content": "ý",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"32004": {
|
39 |
+
"content": "À",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"32005": {
|
47 |
+
"content": "ÿ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"32006": {
|
55 |
+
"content": "ø",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"32007": {
|
63 |
+
"content": "ú",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"32008": {
|
71 |
+
"content": "þ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"32009": {
|
79 |
+
"content": "ü",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"32010": {
|
87 |
+
"content": "ù",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"32011": {
|
95 |
+
"content": "ö",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"32012": {
|
103 |
+
"content": "û",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"32013": {
|
111 |
+
"content": "<|begin▁of▁sentence|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"32014": {
|
119 |
+
"content": "<|end▁of▁sentence|>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": true
|
125 |
+
},
|
126 |
+
"32015": {
|
127 |
+
"content": "<|fim▁hole|>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"32016": {
|
135 |
+
"content": "<|fim▁begin|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"32017": {
|
143 |
+
"content": "<|fim▁end|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"32018": {
|
151 |
+
"content": "<pad>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"32019": {
|
159 |
+
"content": "<|User|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"32020": {
|
167 |
+
"content": "<|Assistant|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"32021": {
|
175 |
+
"content": "<|EOT|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": true
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
184 |
+
"chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
|
185 |
+
"clean_up_tokenization_spaces": false,
|
186 |
+
"eos_token": "<|EOT|>",
|
187 |
+
"legacy": true,
|
188 |
+
"model_max_length": 16384,
|
189 |
+
"pad_token": "<|end▁of▁sentence|>",
|
190 |
+
"sp_model_kwargs": {},
|
191 |
+
"tokenizer_class": "LlamaTokenizer",
|
192 |
+
"unk_token": null,
|
193 |
+
"use_default_system_prompt": false
|
194 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 4.985250737463127,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 845,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0058997050147492625,
|
13 |
+
"grad_norm": 1.106083567904979,
|
14 |
+
"learning_rate": 1.1764705882352942e-07,
|
15 |
+
"loss": 0.7816,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.029498525073746312,
|
20 |
+
"grad_norm": 1.1433080381542629,
|
21 |
+
"learning_rate": 5.882352941176471e-07,
|
22 |
+
"loss": 0.7757,
|
23 |
+
"step": 5
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.058997050147492625,
|
27 |
+
"grad_norm": 0.997014214705184,
|
28 |
+
"learning_rate": 1.1764705882352942e-06,
|
29 |
+
"loss": 0.7736,
|
30 |
+
"step": 10
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.08849557522123894,
|
34 |
+
"grad_norm": 1.304994737635826,
|
35 |
+
"learning_rate": 1.7647058823529414e-06,
|
36 |
+
"loss": 0.7594,
|
37 |
+
"step": 15
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.11799410029498525,
|
41 |
+
"grad_norm": 0.5741459890364078,
|
42 |
+
"learning_rate": 2.3529411764705885e-06,
|
43 |
+
"loss": 0.7332,
|
44 |
+
"step": 20
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.14749262536873156,
|
48 |
+
"grad_norm": 0.4736057964790196,
|
49 |
+
"learning_rate": 2.9411764705882355e-06,
|
50 |
+
"loss": 0.7054,
|
51 |
+
"step": 25
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.17699115044247787,
|
55 |
+
"grad_norm": 0.28699264838960103,
|
56 |
+
"learning_rate": 3.529411764705883e-06,
|
57 |
+
"loss": 0.6613,
|
58 |
+
"step": 30
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.20648967551622419,
|
62 |
+
"grad_norm": 1.92856903253004,
|
63 |
+
"learning_rate": 4.11764705882353e-06,
|
64 |
+
"loss": 0.6422,
|
65 |
+
"step": 35
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.2359882005899705,
|
69 |
+
"grad_norm": 0.346137515731761,
|
70 |
+
"learning_rate": 4.705882352941177e-06,
|
71 |
+
"loss": 0.6165,
|
72 |
+
"step": 40
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.26548672566371684,
|
76 |
+
"grad_norm": 0.17870145514430266,
|
77 |
+
"learning_rate": 5.294117647058824e-06,
|
78 |
+
"loss": 0.6133,
|
79 |
+
"step": 45
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.2949852507374631,
|
83 |
+
"grad_norm": 0.1437606973005659,
|
84 |
+
"learning_rate": 5.882352941176471e-06,
|
85 |
+
"loss": 0.5986,
|
86 |
+
"step": 50
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.32448377581120946,
|
90 |
+
"grad_norm": 0.2706264861398608,
|
91 |
+
"learning_rate": 6.470588235294119e-06,
|
92 |
+
"loss": 0.5884,
|
93 |
+
"step": 55
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.35398230088495575,
|
97 |
+
"grad_norm": 0.6332617880988516,
|
98 |
+
"learning_rate": 7.058823529411766e-06,
|
99 |
+
"loss": 0.5818,
|
100 |
+
"step": 60
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.3834808259587021,
|
104 |
+
"grad_norm": 0.1015116079049458,
|
105 |
+
"learning_rate": 7.647058823529411e-06,
|
106 |
+
"loss": 0.5798,
|
107 |
+
"step": 65
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.41297935103244837,
|
111 |
+
"grad_norm": 0.12119348356809045,
|
112 |
+
"learning_rate": 8.23529411764706e-06,
|
113 |
+
"loss": 0.5751,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.4424778761061947,
|
118 |
+
"grad_norm": 0.07879965059698645,
|
119 |
+
"learning_rate": 8.823529411764707e-06,
|
120 |
+
"loss": 0.5708,
|
121 |
+
"step": 75
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.471976401179941,
|
125 |
+
"grad_norm": 0.05646247242948782,
|
126 |
+
"learning_rate": 9.411764705882354e-06,
|
127 |
+
"loss": 0.5683,
|
128 |
+
"step": 80
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.5014749262536873,
|
132 |
+
"grad_norm": 0.25525240715915204,
|
133 |
+
"learning_rate": 1e-05,
|
134 |
+
"loss": 0.5662,
|
135 |
+
"step": 85
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.5309734513274337,
|
139 |
+
"grad_norm": 0.05365048303720814,
|
140 |
+
"learning_rate": 9.998932083939657e-06,
|
141 |
+
"loss": 0.5598,
|
142 |
+
"step": 90
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.56047197640118,
|
146 |
+
"grad_norm": 0.1595860307142945,
|
147 |
+
"learning_rate": 9.995728791936505e-06,
|
148 |
+
"loss": 0.5538,
|
149 |
+
"step": 95
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.5899705014749262,
|
153 |
+
"grad_norm": 0.06609453133465848,
|
154 |
+
"learning_rate": 9.990391492329341e-06,
|
155 |
+
"loss": 0.5529,
|
156 |
+
"step": 100
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.6194690265486725,
|
160 |
+
"grad_norm": 1.6293266027560704,
|
161 |
+
"learning_rate": 9.98292246503335e-06,
|
162 |
+
"loss": 0.5527,
|
163 |
+
"step": 105
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.6489675516224189,
|
167 |
+
"grad_norm": 1.050544643875783,
|
168 |
+
"learning_rate": 9.973324900566214e-06,
|
169 |
+
"loss": 0.5477,
|
170 |
+
"step": 110
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.6784660766961652,
|
174 |
+
"grad_norm": 0.052879637742834044,
|
175 |
+
"learning_rate": 9.961602898685225e-06,
|
176 |
+
"loss": 0.5474,
|
177 |
+
"step": 115
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.7079646017699115,
|
181 |
+
"grad_norm": 0.04928862663129842,
|
182 |
+
"learning_rate": 9.947761466636014e-06,
|
183 |
+
"loss": 0.5553,
|
184 |
+
"step": 120
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.7374631268436578,
|
188 |
+
"grad_norm": 0.052753160381468045,
|
189 |
+
"learning_rate": 9.931806517013612e-06,
|
190 |
+
"loss": 0.5464,
|
191 |
+
"step": 125
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.7669616519174042,
|
195 |
+
"grad_norm": 0.045802114899820966,
|
196 |
+
"learning_rate": 9.913744865236798e-06,
|
197 |
+
"loss": 0.5404,
|
198 |
+
"step": 130
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.7964601769911505,
|
202 |
+
"grad_norm": 0.11489905003299361,
|
203 |
+
"learning_rate": 9.893584226636773e-06,
|
204 |
+
"loss": 0.5317,
|
205 |
+
"step": 135
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.8259587020648967,
|
209 |
+
"grad_norm": 0.4919380291913098,
|
210 |
+
"learning_rate": 9.871333213161438e-06,
|
211 |
+
"loss": 0.5481,
|
212 |
+
"step": 140
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.855457227138643,
|
216 |
+
"grad_norm": 0.3232334093103194,
|
217 |
+
"learning_rate": 9.847001329696653e-06,
|
218 |
+
"loss": 0.5339,
|
219 |
+
"step": 145
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.8849557522123894,
|
223 |
+
"grad_norm": 0.05048150556921708,
|
224 |
+
"learning_rate": 9.820598970006068e-06,
|
225 |
+
"loss": 0.5325,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.9144542772861357,
|
230 |
+
"grad_norm": 0.058183934565565226,
|
231 |
+
"learning_rate": 9.792137412291265e-06,
|
232 |
+
"loss": 0.5373,
|
233 |
+
"step": 155
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.943952802359882,
|
237 |
+
"grad_norm": 2.1026211814523927,
|
238 |
+
"learning_rate": 9.761628814374074e-06,
|
239 |
+
"loss": 0.535,
|
240 |
+
"step": 160
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.9734513274336283,
|
244 |
+
"grad_norm": 0.05037291432057576,
|
245 |
+
"learning_rate": 9.729086208503174e-06,
|
246 |
+
"loss": 0.5392,
|
247 |
+
"step": 165
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.9970501474926253,
|
251 |
+
"eval_loss": 0.5948278307914734,
|
252 |
+
"eval_runtime": 7.8455,
|
253 |
+
"eval_samples_per_second": 16.825,
|
254 |
+
"eval_steps_per_second": 0.382,
|
255 |
+
"step": 169
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 1.0029498525073746,
|
259 |
+
"grad_norm": 0.07970296331803481,
|
260 |
+
"learning_rate": 9.694523495787149e-06,
|
261 |
+
"loss": 0.5852,
|
262 |
+
"step": 170
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 1.0324483775811208,
|
266 |
+
"grad_norm": 0.06217085534785087,
|
267 |
+
"learning_rate": 9.657955440256396e-06,
|
268 |
+
"loss": 0.5318,
|
269 |
+
"step": 175
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 1.0619469026548674,
|
273 |
+
"grad_norm": 0.4533798599174413,
|
274 |
+
"learning_rate": 9.619397662556434e-06,
|
275 |
+
"loss": 0.5265,
|
276 |
+
"step": 180
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 1.0914454277286136,
|
280 |
+
"grad_norm": 0.0843198746785751,
|
281 |
+
"learning_rate": 9.578866633275289e-06,
|
282 |
+
"loss": 0.525,
|
283 |
+
"step": 185
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 1.12094395280236,
|
287 |
+
"grad_norm": 0.0514110786588162,
|
288 |
+
"learning_rate": 9.536379665907801e-06,
|
289 |
+
"loss": 0.5244,
|
290 |
+
"step": 190
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.1504424778761062,
|
294 |
+
"grad_norm": 0.08421706916029806,
|
295 |
+
"learning_rate": 9.491954909459895e-06,
|
296 |
+
"loss": 0.5241,
|
297 |
+
"step": 195
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.1799410029498525,
|
301 |
+
"grad_norm": 0.058452224546329916,
|
302 |
+
"learning_rate": 9.445611340695926e-06,
|
303 |
+
"loss": 0.5274,
|
304 |
+
"step": 200
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 1.2094395280235988,
|
308 |
+
"grad_norm": 1.2314254826441438,
|
309 |
+
"learning_rate": 9.397368756032445e-06,
|
310 |
+
"loss": 0.5247,
|
311 |
+
"step": 205
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 1.238938053097345,
|
315 |
+
"grad_norm": 0.04772904502073005,
|
316 |
+
"learning_rate": 9.347247763081834e-06,
|
317 |
+
"loss": 0.5276,
|
318 |
+
"step": 210
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 1.2684365781710913,
|
322 |
+
"grad_norm": 0.05022705703233357,
|
323 |
+
"learning_rate": 9.295269771849426e-06,
|
324 |
+
"loss": 0.5179,
|
325 |
+
"step": 215
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 1.2979351032448379,
|
329 |
+
"grad_norm": 0.2724781073186335,
|
330 |
+
"learning_rate": 9.241456985587868e-06,
|
331 |
+
"loss": 0.5229,
|
332 |
+
"step": 220
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 1.3274336283185841,
|
336 |
+
"grad_norm": 0.07955839264628826,
|
337 |
+
"learning_rate": 9.185832391312644e-06,
|
338 |
+
"loss": 0.5222,
|
339 |
+
"step": 225
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.3569321533923304,
|
343 |
+
"grad_norm": 0.047043054214154625,
|
344 |
+
"learning_rate": 9.12841974998278e-06,
|
345 |
+
"loss": 0.5195,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 1.3864306784660767,
|
350 |
+
"grad_norm": 0.045497809508961325,
|
351 |
+
"learning_rate": 9.069243586350976e-06,
|
352 |
+
"loss": 0.5148,
|
353 |
+
"step": 235
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 1.415929203539823,
|
357 |
+
"grad_norm": 0.8566869256944054,
|
358 |
+
"learning_rate": 9.008329178487442e-06,
|
359 |
+
"loss": 0.5207,
|
360 |
+
"step": 240
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 1.4454277286135693,
|
364 |
+
"grad_norm": 0.06712694488880502,
|
365 |
+
"learning_rate": 8.94570254698197e-06,
|
366 |
+
"loss": 0.5219,
|
367 |
+
"step": 245
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 1.4749262536873156,
|
371 |
+
"grad_norm": 0.134636628527114,
|
372 |
+
"learning_rate": 8.881390443828788e-06,
|
373 |
+
"loss": 0.5164,
|
374 |
+
"step": 250
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.504424778761062,
|
378 |
+
"grad_norm": 1.017642297039446,
|
379 |
+
"learning_rate": 8.815420340999034e-06,
|
380 |
+
"loss": 0.5164,
|
381 |
+
"step": 255
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.5339233038348081,
|
385 |
+
"grad_norm": 0.8748816419357938,
|
386 |
+
"learning_rate": 8.747820418705632e-06,
|
387 |
+
"loss": 0.519,
|
388 |
+
"step": 260
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 1.5634218289085546,
|
392 |
+
"grad_norm": 0.05916211446645424,
|
393 |
+
"learning_rate": 8.67861955336566e-06,
|
394 |
+
"loss": 0.5132,
|
395 |
+
"step": 265
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 1.592920353982301,
|
399 |
+
"grad_norm": 0.06267760570910012,
|
400 |
+
"learning_rate": 8.607847305265312e-06,
|
401 |
+
"loss": 0.5119,
|
402 |
+
"step": 270
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 1.6224188790560472,
|
406 |
+
"grad_norm": 0.053722149220927,
|
407 |
+
"learning_rate": 8.535533905932739e-06,
|
408 |
+
"loss": 0.514,
|
409 |
+
"step": 275
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 1.6519174041297935,
|
413 |
+
"grad_norm": 0.055409146579795114,
|
414 |
+
"learning_rate": 8.461710245224149e-06,
|
415 |
+
"loss": 0.5231,
|
416 |
+
"step": 280
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.6814159292035398,
|
420 |
+
"grad_norm": 0.049718992850954775,
|
421 |
+
"learning_rate": 8.386407858128707e-06,
|
422 |
+
"loss": 0.5127,
|
423 |
+
"step": 285
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.7109144542772863,
|
427 |
+
"grad_norm": 0.0443810313683345,
|
428 |
+
"learning_rate": 8.309658911297833e-06,
|
429 |
+
"loss": 0.5116,
|
430 |
+
"step": 290
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 1.7404129793510323,
|
434 |
+
"grad_norm": 0.05127452771633588,
|
435 |
+
"learning_rate": 8.231496189304704e-06,
|
436 |
+
"loss": 0.5078,
|
437 |
+
"step": 295
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 1.7699115044247788,
|
441 |
+
"grad_norm": 0.04591077767546143,
|
442 |
+
"learning_rate": 8.151953080639777e-06,
|
443 |
+
"loss": 0.5125,
|
444 |
+
"step": 300
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 1.799410029498525,
|
448 |
+
"grad_norm": 0.04535715037949931,
|
449 |
+
"learning_rate": 8.071063563448341e-06,
|
450 |
+
"loss": 0.5131,
|
451 |
+
"step": 305
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 1.8289085545722714,
|
455 |
+
"grad_norm": 0.045271495366352554,
|
456 |
+
"learning_rate": 7.988862191016204e-06,
|
457 |
+
"loss": 0.5123,
|
458 |
+
"step": 310
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.8584070796460177,
|
462 |
+
"grad_norm": 0.056004335836578926,
|
463 |
+
"learning_rate": 7.905384077009693e-06,
|
464 |
+
"loss": 0.5097,
|
465 |
+
"step": 315
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.887905604719764,
|
469 |
+
"grad_norm": 0.04430378987199138,
|
470 |
+
"learning_rate": 7.820664880476257e-06,
|
471 |
+
"loss": 0.5143,
|
472 |
+
"step": 320
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 1.9174041297935103,
|
476 |
+
"grad_norm": 0.04609433007960605,
|
477 |
+
"learning_rate": 7.734740790612137e-06,
|
478 |
+
"loss": 0.5086,
|
479 |
+
"step": 325
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 1.9469026548672566,
|
483 |
+
"grad_norm": 0.7820689144245092,
|
484 |
+
"learning_rate": 7.647648511303545e-06,
|
485 |
+
"loss": 0.5095,
|
486 |
+
"step": 330
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 1.976401179941003,
|
490 |
+
"grad_norm": 0.049876695974305066,
|
491 |
+
"learning_rate": 7.559425245448006e-06,
|
492 |
+
"loss": 0.5116,
|
493 |
+
"step": 335
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 2.0,
|
497 |
+
"eval_loss": 0.569428026676178,
|
498 |
+
"eval_runtime": 7.9223,
|
499 |
+
"eval_samples_per_second": 16.662,
|
500 |
+
"eval_steps_per_second": 0.379,
|
501 |
+
"step": 339
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 2.005899705014749,
|
505 |
+
"grad_norm": 0.059860668705846505,
|
506 |
+
"learning_rate": 7.470108679062521e-06,
|
507 |
+
"loss": 0.5565,
|
508 |
+
"step": 340
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 2.0353982300884956,
|
512 |
+
"grad_norm": 0.045373657400373905,
|
513 |
+
"learning_rate": 7.379736965185369e-06,
|
514 |
+
"loss": 0.5022,
|
515 |
+
"step": 345
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 2.0648967551622417,
|
519 |
+
"grad_norm": 0.04575003134013503,
|
520 |
+
"learning_rate": 7.288348707578409e-06,
|
521 |
+
"loss": 0.5009,
|
522 |
+
"step": 350
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 2.094395280235988,
|
526 |
+
"grad_norm": 0.0764963225778181,
|
527 |
+
"learning_rate": 7.195982944236853e-06,
|
528 |
+
"loss": 0.5023,
|
529 |
+
"step": 355
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 2.1238938053097347,
|
533 |
+
"grad_norm": 0.2864046551111833,
|
534 |
+
"learning_rate": 7.102679130713538e-06,
|
535 |
+
"loss": 0.5027,
|
536 |
+
"step": 360
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 2.1533923303834808,
|
540 |
+
"grad_norm": 0.0726950183868685,
|
541 |
+
"learning_rate": 7.008477123264849e-06,
|
542 |
+
"loss": 0.4995,
|
543 |
+
"step": 365
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 2.1828908554572273,
|
547 |
+
"grad_norm": 0.047612550060808626,
|
548 |
+
"learning_rate": 6.913417161825449e-06,
|
549 |
+
"loss": 0.5073,
|
550 |
+
"step": 370
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 2.2123893805309733,
|
554 |
+
"grad_norm": 0.045980323605959564,
|
555 |
+
"learning_rate": 6.817539852819149e-06,
|
556 |
+
"loss": 0.5066,
|
557 |
+
"step": 375
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 2.24188790560472,
|
561 |
+
"grad_norm": 0.05019367448115624,
|
562 |
+
"learning_rate": 6.720886151813194e-06,
|
563 |
+
"loss": 0.5054,
|
564 |
+
"step": 380
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 2.271386430678466,
|
568 |
+
"grad_norm": 0.04465323510528684,
|
569 |
+
"learning_rate": 6.6234973460234184e-06,
|
570 |
+
"loss": 0.5003,
|
571 |
+
"step": 385
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 2.3008849557522124,
|
575 |
+
"grad_norm": 0.08235286259691993,
|
576 |
+
"learning_rate": 6.525415036677745e-06,
|
577 |
+
"loss": 0.5001,
|
578 |
+
"step": 390
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 2.330383480825959,
|
582 |
+
"grad_norm": 0.050999382045359705,
|
583 |
+
"learning_rate": 6.426681121245527e-06,
|
584 |
+
"loss": 0.498,
|
585 |
+
"step": 395
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 2.359882005899705,
|
589 |
+
"grad_norm": 0.04526036928138616,
|
590 |
+
"learning_rate": 6.327337775540362e-06,
|
591 |
+
"loss": 0.5018,
|
592 |
+
"step": 400
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 2.3893805309734515,
|
596 |
+
"grad_norm": 0.05806925044679012,
|
597 |
+
"learning_rate": 6.227427435703997e-06,
|
598 |
+
"loss": 0.4955,
|
599 |
+
"step": 405
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 2.4188790560471976,
|
603 |
+
"grad_norm": 0.06164688967940204,
|
604 |
+
"learning_rate": 6.126992780079032e-06,
|
605 |
+
"loss": 0.4971,
|
606 |
+
"step": 410
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 2.448377581120944,
|
610 |
+
"grad_norm": 0.5078396005551373,
|
611 |
+
"learning_rate": 6.026076710978172e-06,
|
612 |
+
"loss": 0.5015,
|
613 |
+
"step": 415
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 2.47787610619469,
|
617 |
+
"grad_norm": 0.046783560822131726,
|
618 |
+
"learning_rate": 5.924722336357793e-06,
|
619 |
+
"loss": 0.4975,
|
620 |
+
"step": 420
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 2.5073746312684366,
|
624 |
+
"grad_norm": 0.04594136178012529,
|
625 |
+
"learning_rate": 5.82297295140367e-06,
|
626 |
+
"loss": 0.4996,
|
627 |
+
"step": 425
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 2.5368731563421827,
|
631 |
+
"grad_norm": 0.05594049666474868,
|
632 |
+
"learning_rate": 5.720872020036734e-06,
|
633 |
+
"loss": 0.5001,
|
634 |
+
"step": 430
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 2.566371681415929,
|
638 |
+
"grad_norm": 0.04465947789722648,
|
639 |
+
"learning_rate": 5.61846315634674e-06,
|
640 |
+
"loss": 0.4924,
|
641 |
+
"step": 435
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 2.5958702064896757,
|
645 |
+
"grad_norm": 0.060580400184871375,
|
646 |
+
"learning_rate": 5.515790105961785e-06,
|
647 |
+
"loss": 0.5022,
|
648 |
+
"step": 440
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 2.6253687315634218,
|
652 |
+
"grad_norm": 0.12381786538248248,
|
653 |
+
"learning_rate": 5.412896727361663e-06,
|
654 |
+
"loss": 0.4972,
|
655 |
+
"step": 445
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 2.6548672566371683,
|
659 |
+
"grad_norm": 0.05202660251491312,
|
660 |
+
"learning_rate": 5.309826973142974e-06,
|
661 |
+
"loss": 0.5071,
|
662 |
+
"step": 450
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 2.6843657817109143,
|
666 |
+
"grad_norm": 0.10377000214654016,
|
667 |
+
"learning_rate": 5.206624871244066e-06,
|
668 |
+
"loss": 0.4995,
|
669 |
+
"step": 455
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 2.713864306784661,
|
673 |
+
"grad_norm": 0.044378951816130024,
|
674 |
+
"learning_rate": 5.103334506137773e-06,
|
675 |
+
"loss": 0.4974,
|
676 |
+
"step": 460
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 2.7433628318584073,
|
680 |
+
"grad_norm": 0.04467225886658485,
|
681 |
+
"learning_rate": 5e-06,
|
682 |
+
"loss": 0.497,
|
683 |
+
"step": 465
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 2.7728613569321534,
|
687 |
+
"grad_norm": 0.051986874546360556,
|
688 |
+
"learning_rate": 4.89666549386223e-06,
|
689 |
+
"loss": 0.4971,
|
690 |
+
"step": 470
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 2.8023598820058995,
|
694 |
+
"grad_norm": 0.12453400877778924,
|
695 |
+
"learning_rate": 4.793375128755934e-06,
|
696 |
+
"loss": 0.4989,
|
697 |
+
"step": 475
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 2.831858407079646,
|
701 |
+
"grad_norm": 0.04420192438109124,
|
702 |
+
"learning_rate": 4.690173026857028e-06,
|
703 |
+
"loss": 0.4965,
|
704 |
+
"step": 480
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 2.8613569321533925,
|
708 |
+
"grad_norm": 0.043489134164912784,
|
709 |
+
"learning_rate": 4.587103272638339e-06,
|
710 |
+
"loss": 0.5001,
|
711 |
+
"step": 485
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 2.8908554572271385,
|
715 |
+
"grad_norm": 0.057345889273731514,
|
716 |
+
"learning_rate": 4.4842098940382155e-06,
|
717 |
+
"loss": 0.4965,
|
718 |
+
"step": 490
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 2.920353982300885,
|
722 |
+
"grad_norm": 0.04346872325174773,
|
723 |
+
"learning_rate": 4.381536843653262e-06,
|
724 |
+
"loss": 0.4973,
|
725 |
+
"step": 495
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 2.949852507374631,
|
729 |
+
"grad_norm": 0.05768914593482109,
|
730 |
+
"learning_rate": 4.279127979963266e-06,
|
731 |
+
"loss": 0.5033,
|
732 |
+
"step": 500
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 2.9793510324483776,
|
736 |
+
"grad_norm": 0.07469078383028477,
|
737 |
+
"learning_rate": 4.17702704859633e-06,
|
738 |
+
"loss": 0.4932,
|
739 |
+
"step": 505
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 2.9970501474926254,
|
743 |
+
"eval_loss": 0.5568187236785889,
|
744 |
+
"eval_runtime": 7.8687,
|
745 |
+
"eval_samples_per_second": 16.775,
|
746 |
+
"eval_steps_per_second": 0.381,
|
747 |
+
"step": 508
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 3.0088495575221237,
|
751 |
+
"grad_norm": 0.2325348943012431,
|
752 |
+
"learning_rate": 4.075277663642208e-06,
|
753 |
+
"loss": 0.5464,
|
754 |
+
"step": 510
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 3.03834808259587,
|
758 |
+
"grad_norm": 0.05925612576951284,
|
759 |
+
"learning_rate": 3.973923289021829e-06,
|
760 |
+
"loss": 0.4879,
|
761 |
+
"step": 515
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 3.0678466076696167,
|
765 |
+
"grad_norm": 0.04576359473331283,
|
766 |
+
"learning_rate": 3.8730072199209705e-06,
|
767 |
+
"loss": 0.4958,
|
768 |
+
"step": 520
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 3.0973451327433628,
|
772 |
+
"grad_norm": 0.04411225192878531,
|
773 |
+
"learning_rate": 3.7725725642960047e-06,
|
774 |
+
"loss": 0.4937,
|
775 |
+
"step": 525
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 3.1268436578171093,
|
779 |
+
"grad_norm": 0.04681950811111515,
|
780 |
+
"learning_rate": 3.67266222445964e-06,
|
781 |
+
"loss": 0.497,
|
782 |
+
"step": 530
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 3.1563421828908553,
|
786 |
+
"grad_norm": 0.05140593649320022,
|
787 |
+
"learning_rate": 3.573318878754475e-06,
|
788 |
+
"loss": 0.4908,
|
789 |
+
"step": 535
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 3.185840707964602,
|
793 |
+
"grad_norm": 0.04848431413605644,
|
794 |
+
"learning_rate": 3.4745849633222566e-06,
|
795 |
+
"loss": 0.4907,
|
796 |
+
"step": 540
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 3.215339233038348,
|
800 |
+
"grad_norm": 0.11169113540037036,
|
801 |
+
"learning_rate": 3.3765026539765832e-06,
|
802 |
+
"loss": 0.4954,
|
803 |
+
"step": 545
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 3.2448377581120944,
|
807 |
+
"grad_norm": 0.045625351277697936,
|
808 |
+
"learning_rate": 3.2791138481868084e-06,
|
809 |
+
"loss": 0.4875,
|
810 |
+
"step": 550
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 3.274336283185841,
|
814 |
+
"grad_norm": 0.04470601186507566,
|
815 |
+
"learning_rate": 3.1824601471808504e-06,
|
816 |
+
"loss": 0.4913,
|
817 |
+
"step": 555
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 3.303834808259587,
|
821 |
+
"grad_norm": 0.04510846620481134,
|
822 |
+
"learning_rate": 3.0865828381745515e-06,
|
823 |
+
"loss": 0.4977,
|
824 |
+
"step": 560
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 3.3333333333333335,
|
828 |
+
"grad_norm": 0.04641841941445331,
|
829 |
+
"learning_rate": 2.991522876735154e-06,
|
830 |
+
"loss": 0.492,
|
831 |
+
"step": 565
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 3.3628318584070795,
|
835 |
+
"grad_norm": 0.044008859582161636,
|
836 |
+
"learning_rate": 2.8973208692864623e-06,
|
837 |
+
"loss": 0.4927,
|
838 |
+
"step": 570
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 3.392330383480826,
|
842 |
+
"grad_norm": 0.058212049337815264,
|
843 |
+
"learning_rate": 2.804017055763149e-06,
|
844 |
+
"loss": 0.4934,
|
845 |
+
"step": 575
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 3.421828908554572,
|
849 |
+
"grad_norm": 0.04488763032020628,
|
850 |
+
"learning_rate": 2.711651292421593e-06,
|
851 |
+
"loss": 0.4896,
|
852 |
+
"step": 580
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 3.4513274336283186,
|
856 |
+
"grad_norm": 0.06877731409673225,
|
857 |
+
"learning_rate": 2.6202630348146323e-06,
|
858 |
+
"loss": 0.4927,
|
859 |
+
"step": 585
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 3.4808259587020647,
|
863 |
+
"grad_norm": 0.04405767793752617,
|
864 |
+
"learning_rate": 2.529891320937481e-06,
|
865 |
+
"loss": 0.4885,
|
866 |
+
"step": 590
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 3.510324483775811,
|
870 |
+
"grad_norm": 0.046525497495949794,
|
871 |
+
"learning_rate": 2.4405747545519966e-06,
|
872 |
+
"loss": 0.493,
|
873 |
+
"step": 595
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 3.5398230088495577,
|
877 |
+
"grad_norm": 0.04464423997103832,
|
878 |
+
"learning_rate": 2.352351488696457e-06,
|
879 |
+
"loss": 0.4871,
|
880 |
+
"step": 600
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 3.5693215339233038,
|
884 |
+
"grad_norm": 0.04487754260652396,
|
885 |
+
"learning_rate": 2.265259209387867e-06,
|
886 |
+
"loss": 0.4897,
|
887 |
+
"step": 605
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 3.5988200589970503,
|
891 |
+
"grad_norm": 0.06310865942039023,
|
892 |
+
"learning_rate": 2.179335119523745e-06,
|
893 |
+
"loss": 0.4929,
|
894 |
+
"step": 610
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 3.6283185840707963,
|
898 |
+
"grad_norm": 0.04443946832576421,
|
899 |
+
"learning_rate": 2.094615922990309e-06,
|
900 |
+
"loss": 0.4938,
|
901 |
+
"step": 615
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 3.657817109144543,
|
905 |
+
"grad_norm": 0.04515597574554685,
|
906 |
+
"learning_rate": 2.0111378089837958e-06,
|
907 |
+
"loss": 0.4882,
|
908 |
+
"step": 620
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 3.6873156342182893,
|
912 |
+
"grad_norm": 0.04358107380856759,
|
913 |
+
"learning_rate": 1.928936436551661e-06,
|
914 |
+
"loss": 0.4903,
|
915 |
+
"step": 625
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 3.7168141592920354,
|
919 |
+
"grad_norm": 0.045563864404630304,
|
920 |
+
"learning_rate": 1.848046919360225e-06,
|
921 |
+
"loss": 0.4921,
|
922 |
+
"step": 630
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 3.7463126843657815,
|
926 |
+
"grad_norm": 0.04666731006378484,
|
927 |
+
"learning_rate": 1.7685038106952952e-06,
|
928 |
+
"loss": 0.4934,
|
929 |
+
"step": 635
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 3.775811209439528,
|
933 |
+
"grad_norm": 0.07117810484547947,
|
934 |
+
"learning_rate": 1.6903410887021676e-06,
|
935 |
+
"loss": 0.4892,
|
936 |
+
"step": 640
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 3.8053097345132745,
|
940 |
+
"grad_norm": 0.23100334767483371,
|
941 |
+
"learning_rate": 1.6135921418712959e-06,
|
942 |
+
"loss": 0.493,
|
943 |
+
"step": 645
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 3.8348082595870205,
|
947 |
+
"grad_norm": 0.04506424951487985,
|
948 |
+
"learning_rate": 1.5382897547758513e-06,
|
949 |
+
"loss": 0.484,
|
950 |
+
"step": 650
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 3.864306784660767,
|
954 |
+
"grad_norm": 0.10488547297270173,
|
955 |
+
"learning_rate": 1.4644660940672628e-06,
|
956 |
+
"loss": 0.4877,
|
957 |
+
"step": 655
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 3.893805309734513,
|
961 |
+
"grad_norm": 0.04390462723720627,
|
962 |
+
"learning_rate": 1.3921526947346902e-06,
|
963 |
+
"loss": 0.4887,
|
964 |
+
"step": 660
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 3.9233038348082596,
|
968 |
+
"grad_norm": 0.059362742241561586,
|
969 |
+
"learning_rate": 1.321380446634342e-06,
|
970 |
+
"loss": 0.4943,
|
971 |
+
"step": 665
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 3.952802359882006,
|
975 |
+
"grad_norm": 0.05424105447849983,
|
976 |
+
"learning_rate": 1.2521795812943704e-06,
|
977 |
+
"loss": 0.4871,
|
978 |
+
"step": 670
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 3.982300884955752,
|
982 |
+
"grad_norm": 0.04260561612932512,
|
983 |
+
"learning_rate": 1.1845796590009684e-06,
|
984 |
+
"loss": 0.4874,
|
985 |
+
"step": 675
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 4.0,
|
989 |
+
"eval_loss": 0.5515686869621277,
|
990 |
+
"eval_runtime": 7.9174,
|
991 |
+
"eval_samples_per_second": 16.672,
|
992 |
+
"eval_steps_per_second": 0.379,
|
993 |
+
"step": 678
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 4.011799410029498,
|
997 |
+
"grad_norm": 0.04414788535025088,
|
998 |
+
"learning_rate": 1.118609556171213e-06,
|
999 |
+
"loss": 0.535,
|
1000 |
+
"step": 680
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 4.041297935103245,
|
1004 |
+
"grad_norm": 0.04732115155993842,
|
1005 |
+
"learning_rate": 1.0542974530180327e-06,
|
1006 |
+
"loss": 0.4859,
|
1007 |
+
"step": 685
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 4.070796460176991,
|
1011 |
+
"grad_norm": 0.04337501922937707,
|
1012 |
+
"learning_rate": 9.916708215125586e-07,
|
1013 |
+
"loss": 0.4893,
|
1014 |
+
"step": 690
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 4.100294985250738,
|
1018 |
+
"grad_norm": 0.052054539750301554,
|
1019 |
+
"learning_rate": 9.307564136490255e-07,
|
1020 |
+
"loss": 0.4837,
|
1021 |
+
"step": 695
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 4.129793510324483,
|
1025 |
+
"grad_norm": 0.043254413851663974,
|
1026 |
+
"learning_rate": 8.715802500172215e-07,
|
1027 |
+
"loss": 0.4897,
|
1028 |
+
"step": 700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 4.15929203539823,
|
1032 |
+
"grad_norm": 0.05537638890929335,
|
1033 |
+
"learning_rate": 8.141676086873574e-07,
|
1034 |
+
"loss": 0.4893,
|
1035 |
+
"step": 705
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 4.188790560471976,
|
1039 |
+
"grad_norm": 0.04519429234937821,
|
1040 |
+
"learning_rate": 7.585430144121319e-07,
|
1041 |
+
"loss": 0.4871,
|
1042 |
+
"step": 710
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 4.218289085545723,
|
1046 |
+
"grad_norm": 0.09284032958781858,
|
1047 |
+
"learning_rate": 7.047302281505735e-07,
|
1048 |
+
"loss": 0.4829,
|
1049 |
+
"step": 715
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 4.247787610619469,
|
1053 |
+
"grad_norm": 0.05759138824322539,
|
1054 |
+
"learning_rate": 6.527522369181655e-07,
|
1055 |
+
"loss": 0.4904,
|
1056 |
+
"step": 720
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 4.277286135693215,
|
1060 |
+
"grad_norm": 0.04524068280213349,
|
1061 |
+
"learning_rate": 6.026312439675553e-07,
|
1062 |
+
"loss": 0.4841,
|
1063 |
+
"step": 725
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 4.3067846607669615,
|
1067 |
+
"grad_norm": 0.04432058714882555,
|
1068 |
+
"learning_rate": 5.543886593040737e-07,
|
1069 |
+
"loss": 0.4843,
|
1070 |
+
"step": 730
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 4.336283185840708,
|
1074 |
+
"grad_norm": 0.04232360342920672,
|
1075 |
+
"learning_rate": 5.080450905401057e-07,
|
1076 |
+
"loss": 0.4928,
|
1077 |
+
"step": 735
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 4.3657817109144545,
|
1081 |
+
"grad_norm": 0.12702550471244367,
|
1082 |
+
"learning_rate": 4.6362033409220077e-07,
|
1083 |
+
"loss": 0.4951,
|
1084 |
+
"step": 740
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 4.395280235988201,
|
1088 |
+
"grad_norm": 0.0473973137647136,
|
1089 |
+
"learning_rate": 4.211333667247125e-07,
|
1090 |
+
"loss": 0.4931,
|
1091 |
+
"step": 745
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 4.424778761061947,
|
1095 |
+
"grad_norm": 0.043912927697138504,
|
1096 |
+
"learning_rate": 3.8060233744356634e-07,
|
1097 |
+
"loss": 0.4883,
|
1098 |
+
"step": 750
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 4.454277286135693,
|
1102 |
+
"grad_norm": 0.04305758726287443,
|
1103 |
+
"learning_rate": 3.420445597436056e-07,
|
1104 |
+
"loss": 0.4877,
|
1105 |
+
"step": 755
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 4.48377581120944,
|
1109 |
+
"grad_norm": 0.04286327782385863,
|
1110 |
+
"learning_rate": 3.0547650421285216e-07,
|
1111 |
+
"loss": 0.4865,
|
1112 |
+
"step": 760
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 4.513274336283186,
|
1116 |
+
"grad_norm": 0.04387385477938106,
|
1117 |
+
"learning_rate": 2.7091379149682683e-07,
|
1118 |
+
"loss": 0.4891,
|
1119 |
+
"step": 765
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 4.542772861356932,
|
1123 |
+
"grad_norm": 0.042851842666364756,
|
1124 |
+
"learning_rate": 2.3837118562592799e-07,
|
1125 |
+
"loss": 0.4886,
|
1126 |
+
"step": 770
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 4.572271386430678,
|
1130 |
+
"grad_norm": 0.04267358478101285,
|
1131 |
+
"learning_rate": 2.0786258770873647e-07,
|
1132 |
+
"loss": 0.4896,
|
1133 |
+
"step": 775
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 4.601769911504425,
|
1137 |
+
"grad_norm": 0.050416063074236905,
|
1138 |
+
"learning_rate": 1.7940102999393194e-07,
|
1139 |
+
"loss": 0.4875,
|
1140 |
+
"step": 780
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 4.631268436578171,
|
1144 |
+
"grad_norm": 0.043881002529456536,
|
1145 |
+
"learning_rate": 1.5299867030334815e-07,
|
1146 |
+
"loss": 0.4854,
|
1147 |
+
"step": 785
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"epoch": 4.660766961651918,
|
1151 |
+
"grad_norm": 0.06742603559290723,
|
1152 |
+
"learning_rate": 1.286667868385627e-07,
|
1153 |
+
"loss": 0.4833,
|
1154 |
+
"step": 790
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 4.6902654867256635,
|
1158 |
+
"grad_norm": 0.04689112762822426,
|
1159 |
+
"learning_rate": 1.0641577336322761e-07,
|
1160 |
+
"loss": 0.4859,
|
1161 |
+
"step": 795
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 4.71976401179941,
|
1165 |
+
"grad_norm": 0.04458797008950871,
|
1166 |
+
"learning_rate": 8.625513476320291e-08,
|
1167 |
+
"loss": 0.486,
|
1168 |
+
"step": 800
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 4.7492625368731565,
|
1172 |
+
"grad_norm": 0.043403401141790046,
|
1173 |
+
"learning_rate": 6.819348298638839e-08,
|
1174 |
+
"loss": 0.4835,
|
1175 |
+
"step": 805
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 4.778761061946903,
|
1179 |
+
"grad_norm": 0.04203084473909298,
|
1180 |
+
"learning_rate": 5.223853336398632e-08,
|
1181 |
+
"loss": 0.4846,
|
1182 |
+
"step": 810
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 4.808259587020649,
|
1186 |
+
"grad_norm": 0.046069003410869176,
|
1187 |
+
"learning_rate": 3.839710131477492e-08,
|
1188 |
+
"loss": 0.4887,
|
1189 |
+
"step": 815
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 4.837758112094395,
|
1193 |
+
"grad_norm": 0.04757707619938308,
|
1194 |
+
"learning_rate": 2.6675099433787212e-08,
|
1195 |
+
"loss": 0.4878,
|
1196 |
+
"step": 820
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 4.867256637168142,
|
1200 |
+
"grad_norm": 0.042268713033133586,
|
1201 |
+
"learning_rate": 1.7077534966650767e-08,
|
1202 |
+
"loss": 0.4882,
|
1203 |
+
"step": 825
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 4.896755162241888,
|
1207 |
+
"grad_norm": 0.04302102116033562,
|
1208 |
+
"learning_rate": 9.608507670659239e-09,
|
1209 |
+
"loss": 0.4888,
|
1210 |
+
"step": 830
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 4.926253687315635,
|
1214 |
+
"grad_norm": 0.07913283260437641,
|
1215 |
+
"learning_rate": 4.2712080634949024e-09,
|
1216 |
+
"loss": 0.4839,
|
1217 |
+
"step": 835
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 4.95575221238938,
|
1221 |
+
"grad_norm": 0.04332335955644444,
|
1222 |
+
"learning_rate": 1.0679160603449533e-09,
|
1223 |
+
"loss": 0.4917,
|
1224 |
+
"step": 840
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 4.985250737463127,
|
1228 |
+
"grad_norm": 0.04328053326566176,
|
1229 |
+
"learning_rate": 0.0,
|
1230 |
+
"loss": 0.4883,
|
1231 |
+
"step": 845
|
1232 |
+
}
|
1233 |
+
],
|
1234 |
+
"logging_steps": 5,
|
1235 |
+
"max_steps": 845,
|
1236 |
+
"num_input_tokens_seen": 0,
|
1237 |
+
"num_train_epochs": 5,
|
1238 |
+
"save_steps": 56,
|
1239 |
+
"stateful_callbacks": {
|
1240 |
+
"TrainerControl": {
|
1241 |
+
"args": {
|
1242 |
+
"should_epoch_stop": false,
|
1243 |
+
"should_evaluate": false,
|
1244 |
+
"should_log": false,
|
1245 |
+
"should_save": true,
|
1246 |
+
"should_training_stop": true
|
1247 |
+
},
|
1248 |
+
"attributes": {}
|
1249 |
+
}
|
1250 |
+
},
|
1251 |
+
"total_flos": 2830394185482240.0,
|
1252 |
+
"train_batch_size": 8,
|
1253 |
+
"trial_name": null,
|
1254 |
+
"trial_params": null
|
1255 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f27fc52499c8b2f1bf89674f1a19c9294567ac70a0201773bfcffc7da26321
|
3 |
+
size 6968
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|