codescripts / cloudgpt_aoai.py
f541119578's picture
Upload folder using huggingface_hub
fdf190d verified
from __future__ import annotations
from typing import (
Any,
AsyncGenerator,
Callable,
Coroutine,
Literal,
Optional,
ParamSpec,
TypeVar,
cast,
Dict,
TYPE_CHECKING,
)
import sys, os
import contextlib
import functools
__all__ = [
"get_openai_token_provider",
"get_openai_token",
"get_openai_client",
"get_chat_completion",
"encode_image",
"cloudgpt_available_models",
]
TokenProvider = Callable[[], str]
AsyncTokenProvider = Callable[[], Coroutine[Any, Any, str]]
def check_module():
try:
import openai, azure.identity.broker # type: ignore
del openai, azure.identity.broker
except ImportError:
print("Please install the required packages by running the following command:")
print("pip install openai azure-identity-broker --upgrade")
exit(1)
check_module()
import openai
from openai import OpenAI
_depRt = TypeVar("_depRt")
_depParam = ParamSpec("_depParam")
def _deprecated(message: str):
def deprecated_decorator(
func: Callable[_depParam, _depRt]
) -> Callable[_depParam, _depRt]:
def deprecated_func(
*args: _depParam.args, **kwargs: _depParam.kwargs
) -> _depRt:
import traceback
print(
"\n ⚠️ \x1b[31m{} is a deprecated function. {}".format(
func.__name__, message
)
)
traceback.print_stack()
print("\x1b[0m")
return func(*args, **kwargs)
return deprecated_func
return deprecated_decorator
def _validate_token(token: str) -> bool:
import requests
url = "https://cloudgpt-openai.azure-api.net/openai/ping"
headers = {
"Authorization": f"Bearer {token}",
}
try:
response = requests.get(url, headers=headers)
assert response.status_code == 200 and response.text == "OK", response.text
return True
except Exception as e:
print("Failed to validate token", e)
return False
@functools.lru_cache(maxsize=3)
def get_openai_token_provider(
token_cache_file: str = "cloudgpt-apim-token-cache.bin",
client_id: Optional[str] = None,
client_secret: Optional[str] = None,
use_azure_cli: Optional[bool] = None,
use_broker_login: Optional[bool] = None,
use_managed_identity: Optional[bool] = None,
use_device_code: Optional[bool] = None,
skip_access_validation: Optional[bool] = False,
**kwargs: Any,
) -> TokenProvider:
"""
Get a token provider function that could return a valid access token for CloudGPT OpenAI.
The return value is a function that should be used with AzureOpenAIClient constructor as azure_ad_token_provider parameter.
The following code snippet shows how to use it with AzureOpenAIClient:
```python
token_provider = get_openai_token_provider()
client = openai.AzureOpenAI(
api_version="2024-06-01",
azure_endpoint="https://cloudgpt-openai.azure-api.net/",
azure_ad_token_provider=token_provider,
)
```
Parameters
----------
token_cache_file : str, optional
path to the token cache file, by default 'cloudgpt-apim-token-cache.bin' in the current directory
client_id : Optional[str], optional
client id for AAD app, by default None
client_secret : Optional[str], optional
client secret for AAD app, by default None
use_azure_cli : Optional[bool], optional
use Azure CLI for authentication, by default None. If AzCli has been installed and logged in,
it will be used for authentication. This is recommended for headless environments and AzCLI takes
care of token cache and token refresh.
use_broker_login : Optional[bool], optional
use broker login for authentication, by default None.
If not specified, it will be enabled for known supported environments (e.g. Windows, macOS, WSL, VSCode),
but sometimes it may not always could cache the token for long-term usage.
In such cases, you can disable it by setting it to False.
use_managed_identity : Optional[bool], optional
use managed identity for authentication, by default None.
If not specified, it will use user assigned managed identity if client_id is specified,
For use system assigned managed identity, client_id could be None but need to set use_managed_identity to True.
use_device_code : Optional[bool], optional
use device code for authentication, by default None. If not specified, it will use interactive login on supported platform.
skip_access_validation : Optional[bool], optional
skip access token validation, by default False.
Returns
-------
TokenProvider
the token provider function that could return a valid access token for CloudGPT OpenAI
"""
import shutil
from azure.identity.broker import InteractiveBrowserBrokerCredential
from azure.identity import (
ManagedIdentityCredential,
ClientSecretCredential,
DeviceCodeCredential,
AuthenticationRecord,
AzureCliCredential,
)
from azure.identity import TokenCachePersistenceOptions
import msal # type: ignore
api_scope_base = "api://feb7b661-cac7-44a8-8dc1-163b63c23df2"
tenant_id = "72f988bf-86f1-41af-91ab-2d7cd011db47"
scope = api_scope_base + "/.default"
token_cache_option = TokenCachePersistenceOptions(
name=token_cache_file,
enable_persistence=True,
allow_unencrypted_storage=True,
)
def save_auth_record(auth_record: AuthenticationRecord):
try:
with open(token_cache_file, "w") as cache_file:
cache_file.write(auth_record.serialize())
except Exception as e:
print("failed to save auth record", e)
def load_auth_record() -> Optional[AuthenticationRecord]:
try:
if not os.path.exists(token_cache_file):
return None
with open(token_cache_file, "r") as cache_file:
return AuthenticationRecord.deserialize(cache_file.read())
except Exception as e:
print("failed to load auth record", e)
return None
auth_record: Optional[AuthenticationRecord] = load_auth_record()
current_auth_mode: Literal[
"client_secret",
"managed_identity",
"az_cli",
"interactive",
"device_code",
"none",
] = "none"
implicit_mode = not (
use_managed_identity or use_azure_cli or use_broker_login or use_device_code
)
if use_managed_identity or (implicit_mode and client_id is not None):
if not use_managed_identity and client_secret is not None:
assert (
client_id is not None
), "client_id must be specified with client_secret"
current_auth_mode = "client_secret"
identity = ClientSecretCredential(
client_id=client_id,
client_secret=client_secret,
tenant_id=tenant_id,
cache_persistence_options=token_cache_option,
authentication_record=auth_record,
)
else:
current_auth_mode = "managed_identity"
if client_id is None:
# using default managed identity
identity = ManagedIdentityCredential(
cache_persistence_options=token_cache_option,
)
else:
identity = ManagedIdentityCredential(
client_id=client_id,
cache_persistence_options=token_cache_option,
)
elif use_azure_cli or (implicit_mode and shutil.which("az") is not None):
current_auth_mode = "az_cli"
identity = AzureCliCredential(tenant_id=tenant_id)
else:
if implicit_mode:
# enable broker login for known supported envs if not specified using use_device_code
if sys.platform.startswith("darwin") or sys.platform.startswith("win32"):
use_broker_login = True
elif os.environ.get("WSL_DISTRO_NAME", "") != "":
use_broker_login = True
elif os.environ.get("TERM_PROGRAM", "") == "vscode":
use_broker_login = True
else:
use_broker_login = False
if use_broker_login:
current_auth_mode = "interactive"
identity = InteractiveBrowserBrokerCredential(
tenant_id="72f988bf-86f1-41af-91ab-2d7cd011db47",
cache_persistence_options=token_cache_option,
use_default_broker_account=True,
parent_window_handle=msal.PublicClientApplication.CONSOLE_WINDOW_HANDLE,
authentication_record=auth_record,
)
else:
current_auth_mode = "device_code"
identity = DeviceCodeCredential(
tenant_id="72f988bf-86f1-41af-91ab-2d7cd011db47",
cache_persistence_options=token_cache_option,
authentication_record=auth_record,
)
try:
auth_record = identity.authenticate(scopes=[scope])
if auth_record:
save_auth_record(auth_record)
except Exception as e:
print(
f"failed to acquire token from AAD for CloudGPT OpenAI using {current_auth_mode}",
e,
)
raise e
try:
from azure.identity import get_bearer_token_provider
token_provider = get_bearer_token_provider(identity, scope)
token_verified_cache: str = ""
def token_provider_wrapper():
nonlocal token_verified_cache
token = token_provider()
if token != token_verified_cache:
if not skip_access_validation:
assert _validate_token(token), "failed to validate token"
token_verified_cache = token
return token
return token_provider_wrapper
except Exception as e:
print("failed to acquire token from AAD for CloudGPT OpenAI", e)
raise e
@functools.lru_cache(maxsize=3)
async def async_get_openai_token_provider(
**kwargs: Any,
) -> AsyncTokenProvider:
# TODO: implement async version of get_openai_token_provider
token_provider = get_openai_token_provider(
**kwargs,
)
async def async_token_provider() -> str:
return token_provider()
return async_token_provider
@_deprecated(
"use get_openai_token_provider instead whenever possible "
"and use it as the azure_ad_token_provider parameter in AzureOpenAIClient constructor. "
"Please do not acquire token directly or use it elsewhere."
)
def get_openai_token(
token_cache_file: str = "cloudgpt-apim-token-cache.bin",
client_id: Optional[str] = None,
client_secret: Optional[str] = None,
use_azure_cli: Optional[bool] = None,
use_broker_login: Optional[bool] = None,
use_managed_identity: Optional[bool] = None,
use_device_code: Optional[bool] = None,
skip_access_validation: Optional[bool] = False,
**kwargs: Any,
) -> str:
"""
get access token for CloudGPT OpenAI
"""
return get_openai_token_provider(
token_cache_file=token_cache_file,
client_id=client_id,
client_secret=client_secret,
use_azure_cli=use_azure_cli,
use_broker_login=use_broker_login,
use_managed_identity=use_managed_identity,
use_device_code=use_device_code,
skip_access_validation=skip_access_validation,
**kwargs,
)()
"""
Available models for CloudGPT OpenAI
"""
cloudgpt_available_models = Literal[
"gpt-35-turbo-20220309",
"gpt-35-turbo-16k-20230613",
"gpt-35-turbo-20230613",
"gpt-35-turbo-1106",
"gpt-4-20230321",
"gpt-4-20230613",
"gpt-4-32k-20230321",
"gpt-4-32k-20230613",
"gpt-4-1106-preview",
"gpt-4-0125-preview",
"gpt-4-visual-preview",
"gpt-4-turbo-20240409",
"gpt-4o-20240513",
"gpt-4o-20240806",
"gpt-4o-mini-20240718",
]
cloudgpt_available_realtime_models = Literal["gpt-4o-realtime-preview-20241001"]
def encode_image(image_path: str, mime_type: Optional[str] = None) -> str:
"""
Utility function to encode image to base64 for using in OpenAI API
Parameters
----------
image_path : str
path to the image file
mime_type : Optional[str], optional
mime type of the image, by default None and will infer from the file extension if possible
Returns
-------
str
base64 encoded image url
"""
import base64
import mimetypes
file_name = os.path.basename(image_path)
mime_type = cast(
Optional[str],
mime_type if mime_type is not None else mimetypes.guess_type(file_name)[0], # type: ignore
)
with open(image_path, "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode("ascii")
if mime_type is None or not mime_type.startswith("image/"):
print(
"Warning: mime_type is not specified or not an image mime type. Defaulting to png."
)
mime_type = "image/png"
image_url = f"data:{mime_type};base64," + encoded_image
return image_url
@functools.lru_cache(maxsize=3)
def get_openai_client(
client_id: Optional[str] = None,
client_secret: Optional[str] = None,
use_azure_cli: Optional[bool] = None,
use_broker_login: Optional[bool] = None,
use_managed_identity: Optional[bool] = None,
use_device_code: Optional[bool] = None,
) -> OpenAI:
"""
Initialize OpenAI client for CloudGPT OpenAI.
All parameters are optional and will use the default authentication method if not specified.
Parameters
----------
client_id : Optional[str], optional
client id for AAD app, by default None
client_secret : Optional[str], optional
client secret for AAD app, by default None
use_azure_cli : Optional[bool], optional
use Azure CLI for authentication, by default None. If AzCli has been installed and logged in,
it will be used for authentication. This is recommended for headless environments and AzCLI takes
care of token cache and token refresh.
use_broker_login : Optional[bool], optional
use broker login for authentication, by default None.
If not specified, it will be enabled for known supported environments (e.g. Windows, macOS, WSL, VSCode),
but sometimes it may not always could cache the token for long-term usage.
In such cases, you can disable it by setting it to False.
use_managed_identity : Optional[bool], optional
use managed identity for authentication, by default None.
If not specified, it will use user assigned managed identity if client_id is specified,
For use system assigned managed identity, client_id could be None but need to set use_managed_identity to True.
use_device_code : Optional[bool], optional
use device code for authentication, by default None. If not specified, it will use interactive login on supported platform.
Returns
-------
OpenAI
OpenAI client for CloudGPT OpenAI. Check https://github.com/openai/openai-python for more details.
"""
token_provider = get_openai_token_provider(
client_id=client_id,
client_secret=client_secret,
use_azure_cli=use_azure_cli,
use_broker_login=use_broker_login,
use_managed_identity=use_managed_identity,
use_device_code=use_device_code,
)
print(token_provider())
client = openai.AzureOpenAI(
api_version="2024-06-01",
azure_endpoint="https://cloudgpt-openai.azure-api.net/",
azure_ad_token_provider=token_provider,
)
return client
def get_chat_completion(
model: Optional[cloudgpt_available_models] = None,
client_id: Optional[str] = None,
client_secret: Optional[str] = None,
use_azure_cli: Optional[bool] = None,
use_broker_login: Optional[bool] = None,
use_managed_identity: Optional[bool] = None,
use_device_code: Optional[bool] = None,
**kwargs: Any,
):
"""
Helper function to get chat completion from OpenAI API
"""
engine: Optional[str] = kwargs.get("engine")
model_name: Any = model
if model_name is None:
if engine is None:
raise ValueError("model name must be specified by 'model' parameter")
model_name = engine
if "engine" in kwargs:
del kwargs["engine"]
client = get_openai_client(
client_id=client_id,
client_secret=client_secret,
use_azure_cli=use_azure_cli,
use_broker_login=use_broker_login,
use_managed_identity=use_managed_identity,
use_device_code=use_device_code,
)
response: Any = client.completions.create(model=model_name, **kwargs)
return response
def _check_rtclient():
try:
import rtclient # type: ignore
del rtclient
except ImportError:
raise ImportError(
f"rtclient package is required when using realtime API`. Please install it by running \n"
"pip install https://github.com/Azure-Samples/aoai-realtime-audio-sdk/releases/download/py%2Fv0.5.1/rtclient-0.5.1-py3-none-any.whl"
)
return True
if TYPE_CHECKING:
from rtclient import RTClient, RTLowLevelClient
async def get_realtime_low_level_client(
model: cloudgpt_available_realtime_models = "gpt-4o-realtime-preview-20241001",
**kwargs: Any,
) -> RTLowLevelClient:
"""
Get realtime client with low level API for fined grained control
Usage:
```python
async with await get_realtime_low_level_client() as client:
# use client
pass
```
"""
assert _check_rtclient()
from rtclient import RTLowLevelClient
class CloudGPT_AOAI_RTLowLevelClient(RTLowLevelClient):
def __init__(
self,
token_provider: AsyncTokenProvider,
url: str = "https://cloudgpt-openai.azure-api.net/",
azure_deployment: cloudgpt_available_realtime_models | None = None,
):
self._async_token_provider = token_provider
from azure.core.credentials import AzureKeyCredential
key_credential = AzureKeyCredential("placeholder")
super().__init__(
url=url,
key_credential=key_credential,
azure_deployment=azure_deployment,
)
async def _get_auth(self) -> Dict[str, str]:
token = await self._async_token_provider()
return {"Authorization": f"Bearer {token}"}
token_provider = await async_get_openai_token_provider(**kwargs)
return CloudGPT_AOAI_RTLowLevelClient(
token_provider=token_provider,
azure_deployment=model,
)
async def get_realtime_client(
model: cloudgpt_available_realtime_models = "gpt-4o-realtime-preview-20241001",
**kwargs: Any,
) -> RTClient:
"""
Get realtime client with high level API for simplified usage
Usage:
```python
async with await get_realtime_client() as client:
# use client
pass
```
"""
assert _check_rtclient()
from rtclient import RTClient, MessageQueueWithError, Session
class CloudGPT_AOAI_RTClient(RTClient):
def __init__(
self,
low_level_client: Optional[RTLowLevelClient] = None,
):
self._client = low_level_client
self._message_queue = MessageQueueWithError(
receive_delegate=self._receive_message,
error_predicate=lambda m: m is not None and (m.type == "error"),
)
self.session: Optional[Session] = None
self._response_map: dict[str, str] = {}
low_level_client = await get_realtime_low_level_client(model=model, **kwargs)
return CloudGPT_AOAI_RTClient(low_level_client=low_level_client)
def _test_call(**kwargs: Any):
test_message = "What is the content?"
client = get_openai_client(**kwargs)
response = client.chat.completions.create(
model="gpt-4o-mini-20240718",
messages=[{"role": "user", "content": test_message}],
temperature=0.7,
max_tokens=100,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
)
print(response.choices[0].message)
if __name__ == "__main__":
_test_call(use_broker_login=True)