mins
eva_base_tiny
c501468
raw
history blame
11.2 kB
_base_ = [
'../../../mmdetection3d/configs/_base_/datasets/nus-3d.py',
'../../../mmdetection3d/configs/_base_/default_runtime.py'
]
backbone_norm_cfg = dict(type='LN', requires_grad=True)
plugin=True
plugin_dir='projects/mmdet3d_plugin/'
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
num_gpus = 8
batch_size = 2
num_iters_per_epoch = 28130 // (num_gpus * batch_size)
num_epochs = 6
llm_path = 'ckpts/final/'
collect_keys=['lidar2img', 'intrinsics', 'extrinsics','timestamp', 'img_timestamp', 'ego_pose', 'ego_pose_inv', 'command', 'can_bus']
input_modality = dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=True)
model = dict(
type='Petr3D',
save_path='./results_planning_only/', #save path for vlm models.
use_grid_mask=True,
frozen=False,
use_lora=True,
tokenizer=llm_path,
lm_head=llm_path, # set to None if don't use llm head
img_backbone=dict(
type='EVAViT',
img_size=640,
patch_size=16,
window_size=16,
in_chans=3,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4*2/3,
window_block_indexes = (
list(range(0, 2)) + list(range(3, 5)) + list(range(6, 8)) + list(range(9, 11)) + list(range(12, 14)) + list(range(15, 17)) + list(range(18, 20)) + list(range(21, 23))
),
qkv_bias=True,
drop_path_rate=0.3,
flash_attn=True,
with_cp=True,
frozen=False,),
map_head=dict(
type='PETRHeadM',
num_classes=1,
in_channels=1024,
out_dims=4096,
memory_len=600,
with_mask=True, # map query can't see vlm tokens
topk_proposals=300,
num_lane=1800, # 300+1500
num_lanes_one2one=300,
k_one2many=5,
lambda_one2many=1.0,
num_extra=256,
n_control=11,
pc_range=point_cloud_range,
code_weights = [1.0, 1.0],
transformer=dict(
type='PETRTemporalTransformer',
input_dimension=256,
output_dimension=256,
num_layers=6,
embed_dims=256,
num_heads=8,
feedforward_dims=2048,
dropout=0.1,
with_cp=True,
flash_attn=True,),
train_cfg=dict(
assigner=dict(
type='LaneHungarianAssigner',
cls_cost=dict(type='FocalLossCost', weight=1.5),
reg_cost=dict(type='LaneL1Cost', weight=0.02),
iou_cost=dict(type='IoUCost', weight=0.0))), # dummy
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.5),
loss_bbox=dict(type='L1Loss', loss_weight=0.02),
loss_dir=dict(type='PtsDirCosLoss', loss_weight=0.0)), #
pts_bbox_head=dict(
type='StreamPETRHead',
num_classes=10,
in_channels=1024,
out_dims=4096,
num_query=600,
with_mask=True,
memory_len=600,
topk_proposals=300,
num_propagated=300,
num_extra=256,
n_control=11, # align with centerline query defination
match_with_velo=False,
scalar=10, ##noise groups
noise_scale = 1.0,
dn_weight= 1.0, ##dn loss weight
split = 0.75, ###positive rate
code_weights = [2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
transformer=dict(
type='PETRTemporalTransformer',
input_dimension=256,
output_dimension=256,
num_layers=6,
embed_dims=256,
num_heads=8,
feedforward_dims=2048,
dropout=0.1,
with_cp=True,
flash_attn=True,
),
bbox_coder=dict(
type='NMSFreeCoder',
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
pc_range=point_cloud_range,
max_num=300,
voxel_size=voxel_size,
num_classes=10),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=2.0),
loss_bbox=dict(type='L1Loss', loss_weight=0.25),
loss_iou=dict(type='GIoULoss', loss_weight=0.0),),
# model training and testing settings
train_cfg=dict(pts=dict(
grid_size=[512, 512, 1],
voxel_size=voxel_size,
point_cloud_range=point_cloud_range,
out_size_factor=4,
assigner=dict(
type='HungarianAssigner3D',
cls_cost=dict(type='FocalLossCost', weight=2.0),
reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head.
pc_range=point_cloud_range),)
)
)
dataset_type = 'CustomNuScenesDataset'
data_root = './data/nuscenes/'
file_client_args = dict(backend='disk')
ida_aug_conf = {
"resize_lim": (0.37, 0.45),
"final_dim": (320, 640),
"bot_pct_lim": (0.0, 0.0),
"rot_lim": (0.0, 0.0),
"H": 900,
"W": 1600,
"rand_flip": False,
}
train_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=True),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_bbox=True,
with_label=True, with_bbox_depth=True),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='ResizeCropFlipRotImage', data_aug_conf = ida_aug_conf, training=True),
dict(type='ResizeMultiview3D', img_scale=(640, 640), keep_ratio=False, multiscale_mode='value'),
dict(type='LoadAnnoatationVQA',
base_vqa_path='./data/nuscenes/vqa/train/',
base_desc_path='./data/nuscenes/desc/train/',
base_conv_path='./data/nuscenes/conv/train/',
base_key_path='./data/nuscenes/keywords/train/',
tokenizer=llm_path,
max_length=2048,
ignore_type=[],
lane_objs_info="./data/nuscenes/lane_obj_train.pkl"),
dict(type='NormalizeMultiviewImage', **img_norm_cfg),
dict(type='PadMultiViewImage', size_divisor=32),
dict(type='PETRFormatBundle3D', class_names=class_names, collect_keys=collect_keys + ['prev_exists']),
dict(type='Collect3D', keys=['lane_pts', 'input_ids', 'vlm_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'img', 'gt_bboxes', 'gt_labels', 'centers2d', 'depths', 'prev_exists'] + collect_keys,
meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'box_mode_3d', 'box_type_3d', 'img_norm_cfg', 'scene_token', 'gt_bboxes_3d','gt_labels_3d'))
]
test_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=True),
dict(type='ResizeCropFlipRotImage', data_aug_conf = ida_aug_conf, training=False),
dict(type='ResizeMultiview3D', img_scale=(640, 640), keep_ratio=False, multiscale_mode='value'),
dict(type='NormalizeMultiviewImage', **img_norm_cfg),
dict(type='PadMultiViewImage', size_divisor=32),
dict(type='LoadAnnoatationVQATest',
base_vqa_path='./data/nuscenes/vqa/val/',
base_conv_path='./data/nuscenes/conv/val/',
base_counter_path='./data/nuscenes/eval_cf/',
load_type=["planning"], # please don't test all the questions in single test, it requires quite long time
tokenizer=llm_path,
max_length=2048,),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='PETRFormatBundle3D',
collect_keys=collect_keys,
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['input_ids', 'img'] + collect_keys,
meta_keys=('sample_idx', 'vlm_labels', 'filename', 'ori_shape', 'img_shape','pad_shape', 'scale_factor', 'flip', 'box_mode_3d', 'box_type_3d', 'img_norm_cfg', 'scene_token'))
])
]
data = dict(
samples_per_gpu=batch_size,
workers_per_gpu=2,
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes2d_ego_temporal_infos_train.pkl',
seq_split_num=1, # streaming video training
seq_mode=True, # streaming video training
pipeline=train_pipeline,
classes=class_names,
modality=input_modality,
test_mode=False,
use_valid_flag=True,
filter_empty_gt=False,
box_type_3d='LiDAR'),
val=dict(
type=dataset_type,
eval_mode=['lane', 'det'],
pipeline=test_pipeline,
ann_file=data_root + 'nuscenes2d_ego_temporal_infos_val.pkl',
classes=class_names,
modality=input_modality),
test=dict(
type=dataset_type,
eval_mode=['lane', 'det'],
pipeline=test_pipeline,
ann_file=data_root + 'nuscenes2d_ego_temporal_infos_val.pkl',
classes=class_names,
modality=input_modality),
shuffler_sampler=dict(
type='InfiniteGroupEachSampleInBatchSampler',
seq_split_num=2,
warmup_split_num=10, # lane det and vlm need short term temporal fusion in the early stage of training
num_iters_to_seq=num_iters_per_epoch,
),
nonshuffler_sampler=dict(type='DistributedSampler')
)
optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', type='AdamW',
lr=1e-4, betas=(0.9, 0.999), weight_decay=1e-4,
paramwise_cfg={'decay_rate': 0.9,
'head_decay_rate': 4.0,
'lm_head_decay_rate': 0.1,
'decay_type': 'vit_wise',
'num_layers': 24,
})
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic', grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
min_lr_ratio=1e-3,
)
evaluation = dict(interval=num_iters_per_epoch*num_epochs, pipeline=test_pipeline)
find_unused_parameters=False #### when use checkpoint, find_unused_parameters must be False
checkpoint_config = dict(interval=num_iters_per_epoch//2, max_keep_ckpts=3)
runner = dict(
type='IterBasedRunner', max_iters=num_epochs * num_iters_per_epoch)
load_from=None
resume_from=None